Skip to main content
Log in

The Effects of Selenium on Polyunsaturated Fatty Acids of Diasporangium jonesianum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi had become the main resource of polyunsaturated fatty acids, especially linoleic acid. The research studied the effects and mechanism of selenium on polyunsaturated fatty acids of Diasporangium jonesianum. The results showed that selenium could significantly increase the yields of linoleic acid. In contrast, the growth and γ-linolenic acid yield of D. jonesianum was decreased under selenium treatments. Δ6-Fatty acid desaturase gene of D. jonesianum was investigated in this research. Sequence analysis indicated that this cDNA sequence encoded 235 amino acids. The conserved region of Δ6-fatty acid desaturase included three conserved histidine-rich domain, hydropathy profile, and was rich in disulfide bonds. This study showed that selenium may in discriminatively substitute S and incorporate selenium-amino acids into the desaturase that the conformation of enzyme active sites was impacted which leaded to the inhibition of the convert of linoleic acid to γ-linolenic acid and the over accumulation of linoleic acid. Selenium might enhance the fatty acid contents of fungi through influencing the desaturase structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lio, J. Y., & Wang, T. (2013). Applied Biochemistry and Biotechnology, 169, 595–611.

    Article  CAS  Google Scholar 

  2. Kuhnt, K., Degen, C., Jaudszus, A., & Jahreis, G. (2012). European Journal of Lipid Science and Technology, 114, 153–160.

    Article  CAS  Google Scholar 

  3. Morales, P., Ferreira, I. C. F. R., Carvalho, A. M., Fernandez-Ruiz, V., Sanchez-Mata, M. C., Camara, M., Morales, R., & Tardio, J. (2013). European Journal of Lipid Science and Technology, 115, 176–185.

    Article  CAS  Google Scholar 

  4. Calder, P.C., & Burdge, G.C. (2004). The Oily Press, 1–36.

  5. Lu, H., Li, J. N., Chai, Y. R., Chai, Y. R., & Zhang, X. K. (2009). Molecular Biology Reports, 36, 2291–2297.

    Article  CAS  Google Scholar 

  6. Laoteng, K., Mannontarat, R., Tanticharoen, M., & Cheevadhanarak, H. S. (2000). Biochemical and Biophysical Research Communications, 279, 17–22.

    Article  CAS  Google Scholar 

  7. Michinaka, Y., Aki, T., Shimauchi, T., Nakajima, T., Kawamoto, S., Shiqeta, S., Suzuki, O., & Ono, K. (2003). Applied Microbiology and Biotechnology, 62, 362–368.

    Article  CAS  Google Scholar 

  8. Dong, J. Z., Lei, C., Ai, X. R., & Wang, Y. (2012). Applied Biochemistry and Biotechnology, 166, 1215–1224.

    Article  CAS  Google Scholar 

  9. Glogowski, R., Czauderna, M., Rozbicka-Wieczorek, A., & Krajewska, K. A. (2013). European Journal of Lipid Science and Technology, 115, 170–175.

    Article  CAS  Google Scholar 

  10. Zhao, M., Dai, C. C., Guan, X. Y., & Tao, J. (2009). Enzyme and Microbial Technology, 45, 419–425.

    Article  CAS  Google Scholar 

  11. Riley, M. B., Collins, I. J., Richardson, Y. T., & Stutzenberger, F. J. (2000). Mycologia, 92, 301–304.

    Article  CAS  Google Scholar 

  12. Blau, K., & Darbre, A. (1993). Wiley, 11–29.

  13. Chomczynski, P., & Sacchi, N. (1987). Analytical Biochemistry, 162, 156–159.

    Article  CAS  Google Scholar 

  14. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  15. Moller, S., Croning, M. D., & Apweiler, R. (2001). Bioinformatics, 17, 646–653.

    Article  CAS  Google Scholar 

  16. Sperling, P., Zahringer, U., & Heinz, E. (1998). Journal of Biological Chemistry, 273, 28590–28596.

    Article  CAS  Google Scholar 

  17. Sayanova, O., Beaudoin, F., Libisch, B., Castel, A., Shewry, R. R., & Napier, J. A. (2001). Journal of Experimental Botany, 52, 1581–1585.

    Article  CAS  Google Scholar 

  18. Shanklin, J., Whittle, E., & Fox, B. G. (1994). Biochemistry, 33, 12787–12794.

    Article  CAS  Google Scholar 

  19. Fukuyama, K., Ueki, N., Nakamura, H., Tsukihara, T., & Matsubara, H. (1995). Journal of Biochemistry, 117, 1017–1023.

    CAS  Google Scholar 

  20. Huber, R., Scholze, H., Paques, E. P., & Deisenhofer, J. (1980). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 361, 1389–1399.

    Article  CAS  Google Scholar 

  21. Vangronsveld, J., & Clijsters, H. (1994). Weinheim, 34, 149–177.

    Google Scholar 

  22. Nango, J. L., Czerucka, D., Menguy, F., & Rampal, P. (1989). Biological Trace Element Research, 20, 31–43.

    Article  Google Scholar 

  23. Dodge, M. L., Wander, R. C., Butler, J. A., Du, S. H., Thomson, C. D., & Whanger, P. D. (1999). Journal of Trace Elements in Experimental Medicine, 12, 37–44.

    Article  CAS  Google Scholar 

  24. Brown, T. A., & Shrift, A. (1982). Biological Reviews, 57, 59–84.

    Article  CAS  Google Scholar 

  25. Banuelos, G. S., Terry, N., Leduc, D. L., Pilon-Smits, E. A. H., & Mackey, B. (2005). Environmental Science & Technology, 39, 1771–1777.

    Article  CAS  Google Scholar 

  26. Sanchez, G. M., Garcia, E. A., Izquierdo, J. A., & Del, L. M. (2008). Cell Biology and Toxicology, 24, 321–329.

    Article  Google Scholar 

Download references

Acknowledgments

This research received financial support from a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, the National Key Technology Research and Development Program of China (2006BAD27B09), and the Program of Jiangsu Key Laboratory of Marine Biotechnology (2007HS012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Chao Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y., Guan, XY. & Dai, CC. The Effects of Selenium on Polyunsaturated Fatty Acids of Diasporangium jonesianum . Appl Biochem Biotechnol 172, 561–569 (2014). https://doi.org/10.1007/s12010-013-0477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0477-7

Keywords

Navigation