Skip to main content
Log in

Multi-lineage Potential Research of Bone Marrow-Derived Stromal Cells (BMSCs) from Cattle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bovine bone marrow-derived mesenchymal stem cells (bBMSCs) were isolated from the bone marrow of a 4–6-month-old fetal bovine and then characterized by immunofluorescence and reverse transcriptase polymerase chain reaction. We found that primary bBMSCs could be expanded for 46 passages; the total culture time in vitro was 125 days. The results of surface antigen detection showed that bBMSCs expressed CD29, CD44, and CD73 but did not express endothelial cells and hematopoietic cells-specific marker CD31, CD34, and CD45. The cells from four passages (passages 3, 9, 15, and 25) were successfully induced to differentiate into osteoblasts, adipocytes, hepatic, and islet-like cells. The results indicate the potential for multi-lineage differentiation of bBMSCs that may represent an ideal candidate for cellular transplantation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anjos-Afonso, F., & Bonnet, D. (2008). Isolation, culture, and differentiation potential of mouse marrow stromal cells. Current protocols in stem cell biology Chapter 2: Unit 2B 3. doi:10.1002/9780470151808.sc02b03s7.

    Google Scholar 

  2. Arthur, A., Zannettino, A., & Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 218(2), 237–245. doi:10.1002/jcp.21592.

    Article  CAS  Google Scholar 

  3. Bianco, P., & Robey, P. G. (2001). Stem cells in tissue engineering. Nature, 414(6859), 118–121. doi:10.1038/35102181.

    Article  CAS  Google Scholar 

  4. Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., & Fujinaga, T. (2005). Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell and Tissue Research, 319(2), 243–253. doi:10.1007/s00441-004-1012-5.

    Article  Google Scholar 

  5. Cardoso, T. C., Ferrari, H. F., Garcia, A. F., Novais, J. B., Silva-Frade, C., Ferrarezi, M. C., Andrade, A. L., & Gameiro, R. (2012). Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnology, 12, 18. doi:10.1186/1472-6750-12-18.

    Article  CAS  Google Scholar 

  6. Csaki, C., Matis, U., Mobasheri, A., Ye, H., & Shakibaei, M. (2007). Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochemistry and Cell Biology, 128(6), 507–520. doi:10.1007/s00418-007-0337-z.

    Article  CAS  Google Scholar 

  7. Drost, A. C., Weng, S., Feil, G., Schafer, J., Baumann, S., Kanz, L., Sievert, K. D., Stenzl, A., & Mohle, R. (2009). In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Annals of the New York Academy of Sciences, 1176, 135–143. doi:10.1111/j.1749-6632.2009.04610.x.

    Article  CAS  Google Scholar 

  8. Frankel, M. S. (2000). In search of stem cell policy. Science, 287(5457), 1397.

    Article  CAS  Google Scholar 

  9. Gade, N. E., Pratheesh, M. D., Nath, A., Dubey, P. K., Amarpal, S. B., Saikumar, G., & Taru Sharma, G. (2013). Molecular and cellular characterization of buffalo bone marrow-derived mesenchymal stem cells. Reproduction in Domestic Animals = Zuchthygiene, 48(3), 358–367. doi:10.1111/j.1439-0531.2012.02156.x.

    Article  CAS  Google Scholar 

  10. Gao, Y. J., Qian, W., Wang, B. H., Lin, R., & Hou, X. H. (2006). Differentiation potential of bone marrow stromal cells to enteric neurons in vitro. Chinese Journal of Digestive Diseases, 7(3), 156–163. doi:10.1111/j.1443-9573.2006.00261.x.

    Article  CAS  Google Scholar 

  11. Gu, S., Xing, C., Han, J., Tso, M. O., & Hong, J. (2009). Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Molecular Vision, 15, 99–107.

    CAS  Google Scholar 

  12. Huang, Y., Dai, Z. Q., Ling, S. K., Zhang, H. Y., Wan, Y. M., & Li, Y. H. (2009). Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. Journal of Biomedical Science, 16, 87. doi:10.1186/1423-0127-16-87.

    Article  Google Scholar 

  13. Jones, E. A., Crawford, A., English, A., Henshaw, K., Mundy, J., Corscadden, D., Chapman, T., Emery, P., Hatton, P., & McGonagle, D. (2008). Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis and Rheumatism, 58(6), 1731–1740. doi:10.1002/art.23485.

    Article  CAS  Google Scholar 

  14. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P., & Lee, O. K. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275–1284. doi:10.1002/hep.20469.

    Article  CAS  Google Scholar 

  15. Lennon, D. P., Edmison, J. M., & Caplan, A. I. (2001). Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. Journal of Cellular Physiology, 187(3), 345–355. doi:10.1002/jcp.1081.

    Article  CAS  Google Scholar 

  16. Majumdar, M. K., Banks, V., Peluso, D. P., & Morris, E. A. (2000). Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. Journal of Cellular Physiology, 185(1), 98–106. doi:10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1.

    Article  CAS  Google Scholar 

  17. Martin, D. R., Cox, N. R., Hathcock, T. L., Niemeyer, G. P., & Baker, H. J. (2002). Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Experimental Hematology, 30(8), 879–886.

    Article  CAS  Google Scholar 

  18. McCarty, R. C., Gronthos, S., Zannettino, A. C., Foster, B. K., & Xian, C. J. (2009). Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells. Journal of Cellular Physiology, 219(2), 324–333. doi:10.1002/jcp.21670.

    Article  CAS  Google Scholar 

  19. Moriscot, C., de Fraipont, F., Richard, M. J., Marchand, M., Savatier, P., Bosco, D., Favrot, M., & Benhamou, P. Y. (2005). Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells, 23(4), 594–603. doi:10.1634/stemcells.2004-0123.

    Article  CAS  Google Scholar 

  20. Morita, Y., Mukai, T., Ju, Y., & Watanabe, S. (2013). Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochemistry and Biophysics, 66(1), 73–80. doi:10.1007/s12013-012-9455-x.

    Article  CAS  Google Scholar 

  21. Naghdi, M., Tiraihi, T., Namin, S. A., & Arabkheradmand, J. (2009). Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy, 11(2), 137–152. doi:10.1080/14653240802716582.

    Article  CAS  Google Scholar 

  22. Oh, S. H., Miyazaki, M., Kouchi, H., Inoue, Y., Sakaguchi, M., Tsuji, T., Shima, N., Higashio, K., & Namba, M. (2000). Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochemical and Biophysical Research Communications, 279(2), 500–504. doi:10.1006/bbrc.2000.3985.

    Article  CAS  Google Scholar 

  23. Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., & Petersen, B. E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Laboratory Investigation; A Journal of Technical Methods and Pathology, 84(5), 607–617. doi:10.1038/labinvest.3700074.

    Article  CAS  Google Scholar 

  24. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  Google Scholar 

  25. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., & Verfaillie, C. M. (2001). Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98(9), 2615–2625.

    Article  CAS  Google Scholar 

  26. Ringe, J., Kaps, C., Schmitt, B., Buscher, K., Bartel, J., Smolian, H., Schultz, O., Burmester, G. R., Haupl, T., & Sittinger, M. (2002). Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell and Tissue Research, 307(3), 321–327. doi:10.1007/s00441-002-0525-z.

    Article  CAS  Google Scholar 

  27. Santa Maria, L., Rojas, C. V., & Minguell, J. J. (2004). Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Experimental Cell Research, 300(2), 418–426. doi:10.1016/j.yexcr.2004.07.017.

    Article  CAS  Google Scholar 

  28. Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S., & Verfaillie, C. M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation, 109(10), 1291–1302. doi:10.1172/JCI15182.

    Article  CAS  Google Scholar 

  29. Soleimani, M., & Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4(1), 102–106. doi:10.1038/nprot.2008.221.

    Article  CAS  Google Scholar 

  30. Sordi, V., Malosio, M. L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B. E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E., & Piemonti, L. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106(2), 419–427. doi:10.1182/blood-2004-09-3507.

    Article  CAS  Google Scholar 

  31. Tamama, K., Sen, C. K., & Wells, A. (2008). Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells and Development, 17(5), 897–908. doi:10.1089/scd.2007.0155.

    Article  CAS  Google Scholar 

  32. Tan, S. L., Ahmad, R. E., Ahmad, T. S., Merican, A. M., Abbas, A. A., Ng, W. M., & Kamarul, T. (2012). Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells, Tissues, Organs, 196(4), 325–338. doi:10.1159/000335693.

    Article  CAS  Google Scholar 

  33. Tan, S. L., Ahmad, T. S., Selvaratnam, L., & Kamarul, T. (2013). Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. Journal of Anatomy, 222(4), 437–450. doi:10.1111/joa.12032.

    Article  CAS  Google Scholar 

  34. Tashiro, K., Inamura, M., Kawabata, K., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells, 27(8), 1802–1811. doi:10.1002/stem.108.

    Article  CAS  Google Scholar 

  35. Tashiro, K., Kondo, A., Kawabata, K., Sakurai, H., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient osteoblast differentiation from mouse bone marrow stromal cells with polylysin-modified adenovirus vectors. Biochemical and Biophysical Research Communications, 379(1), 127–132. doi:10.1016/j.bbrc.2008.12.055.

    Article  CAS  Google Scholar 

  36. Uzan, G. (2004). Therapeutic use of stem cells. II. Adult stem cells. La Revue du Praticien, 54(14), 1515–1527.

    Google Scholar 

Download references

Acknowledgments

This work was supported by “863” National Major Research Program (2006AA10Z198), “863” National Major Research Program (2007AA10Z170), National Infrastructure of Natural Science and Technology Program (2005DKA21101),National Key Technology R&D Program (2006BAD13B08), and National Scientific Foundation of China (30671539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T., Huang, Y., Wang, H. et al. Multi-lineage Potential Research of Bone Marrow-Derived Stromal Cells (BMSCs) from Cattle. Appl Biochem Biotechnol 172, 21–35 (2014). https://doi.org/10.1007/s12010-013-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0458-x

Keywords

Navigation