Skip to main content
Log in

Improvement of Strain Penicillium sp. EZ-ZH190 for Tannase Production by Induced Mutation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the search for an efficient producer of tannase, Penicillium sp. EZ-ZH190 was subjected to mutagenesis using heat treatment and strain EZ-ZH290 was isolated. The maximum tannase in this mutant strain was 4.32 U/mL with an incubation period of 84 h as compared to wild strain EZ-ZH190 where the incubation period was 96 h with a maximum enzyme activity of 4.33 U/mL. Also, the Penicillium sp. EZ-ZH290 tannase had a maximum activity at 40 °C and pH 5.5. Then, the spores of strain EZ-ZH290 were subjected to γ irradiation mutagenesis and strain EZ-ZH390 was isolated. Strain EZ-ZH390 exhibited higher tannase activity (7.66 U/mL) than the parent strain EZ-ZH290. It was also found that Penicillium sp. EZ-ZH390 tannase had an optimum activity at 35 °C and a broad pH profile with an optimum at pH 5.5. The tannase pH stability of Penicillium sp. EZ-ZH390 and its maximum production of tannase followed the same trend for five generations confirming the occurrence of stable mutant. This paper is shown that γ irradiation can mutate the Penicillium sp. leading to increase the tannase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pepi, M., Lampariello, L. R., & Altieri, R. (2010). International Biodeterioration and Biodegradation, 64, 73–80. doi:10.1016/j.ibiod.2009.10.009.

    Article  CAS  Google Scholar 

  2. Frutos, P., Hervas, G., Giraldez, F. J., & Mantec, A. R. (2004). Spanish Journal of Agricultural Research, 2, 191–202.

    Google Scholar 

  3. Bele, A. A., Jadhav, V. M., & Kadam, V. J. (2010). Asian Journal of Plant Sciences, 9, 209–214. doi:10.3923/ajps.2010.209.214.

    Article  Google Scholar 

  4. Belmares, R., Contreras-Esquivel, J. C., Rodriguez-Herrera, R., Coronel, A. R., & Aguilar, C. N. (2004). LWT—Food Science and Technology, 37, 857–864. doi:10.1016/j.lwt.2004.04.002.

    CAS  Google Scholar 

  5. Mingshu, L., Kai, Y., Qiang, H., & Dongying, J. (2006). Journal of Basic Microbiology, 46, 68–84. doi:10.1002/jobm.200510600.

    Article  Google Scholar 

  6. Lekha, P. K., & Lonsane, B. K. (1997). Advances in Applied Microbiology, 44, 215–260. doi:10.1016/S0065-2164(08)70463-5.

    Article  CAS  Google Scholar 

  7. Rodriguez, H., Curiel, J. A., Landete, J. M., et al. (2009). International Journal of Food Microbiology, 132, 79–90. doi:10.1016/j.ijfoodmicro.2009.03.025.

    Article  CAS  Google Scholar 

  8. Ramirez, L., Arrizon, J., Sandoval, G., et al. (2008). Applied Biochemistry and Biotechnology, 151, 711–723. doi:10.1007/s12010-008-8319-8.

    Article  CAS  Google Scholar 

  9. Rodriguez-Duran, L. V., Valdivia-Urdiales, B., Contreras-Esquivel, J. C., Rodriguez-Herrera, R., & Aguilar, C. N. (2011). Enzyme Research, 1–20, doi: 10.4061/2011/823619 .

  10. Aguilar, C. N., Rodriguez, R., Gutierrez-Sanchez, G., et al. (2007). Applied Microbiology and Biotechnology, 76, 47–59. doi:10.1007/s00253-007-1000-2.

    Article  CAS  Google Scholar 

  11. Aguilar, C. N., & Gutierrez-Sanchez, G. (2001). Food Science and Technology International, 7, 373–382. doi:10.1106/69M3-B30K-CF7Q-RJ5G.

    CAS  Google Scholar 

  12. Belur, P. D., & Mugeraya, G. (2011). Research Journal of Microbiology, 6, 25–40.

    Article  CAS  Google Scholar 

  13. Cruz-Hernandez, M., Contreras-Esquivel, J. C., Lara, F., Rodriguez, R., & Aguilar, C. N. (2005). Section C, Journal of Biosciences (Zeitschrift fur Naturforschung), 60, 844–848.

    CAS  Google Scholar 

  14. Mahapatra, S., & Banerjee, D. (2009). Hyalopus sp. Journal of General and Applied Microbiology, 55, 255–259.

    Article  CAS  Google Scholar 

  15. Chhokar, V., Seema, V., & Beniwal, V. (2010). Biotechnology and Bioprocess Engineering, 15, 793–799. doi:10.1007/s12257-010-0058-3.

    Article  CAS  Google Scholar 

  16. Belur, P. D., Gopal, M., Nirmala, K. R., & Basavaraj, N. (2010). Journal of Microbiology and Biotechnology, 20, 732–736.

    CAS  Google Scholar 

  17. Purohit, J. S., Dutta, J. R., Nanda, R. K., & Banerjee, R. (2006). Bioresource Technology, 97, 795–801. doi:10.1016/j.biortech.2005.04.031.

    Article  CAS  Google Scholar 

  18. Raaman, N., Mahendran, B., Jaganathan, C., Sukumar, S., & Chandrasekaran, V. (2010). World Journal of Microbiology and Biotechnology, 26, 1033–1039. doi:10.1007/s11274-009-0266-1.

    Article  CAS  Google Scholar 

  19. Gupta, R., Bradoo, S., & Saxena, R. K. (1997). Letters in Applied Microbiology, 24, 253–255. doi:10.1046/j.1472-765X.1997.00054.x.

    Article  CAS  Google Scholar 

  20. Curiel, J. A., Rodriguez, H., Acebron, I., Mancheno, J. M., de Blanca Rivas, L., & Munoz, R. (2009). Journal of Agricultural and Food Chemistry, 57, 6224–6230. doi:10.1021/jf901045s.

    Article  CAS  Google Scholar 

  21. Murugan, K., Saravanababu, S., & Arunachalam, M. (2007). Bioresource Technology, 98, 946–949. doi:10.1016/j.biortech.2006.04.031.

    Article  CAS  Google Scholar 

  22. Tuite, j. (1969). Plant pathological methods fungi and bacteria (pp.229). U.S.A: Burgess publishing company.

    Google Scholar 

  23. Rout, S., & Banerjee, R. (2006). Indian Journal of Biotechnology, 5, 346–350.

    CAS  Google Scholar 

  24. Ibuchi, S., Minoda, Y., & Yamada, K. (1967). Agricultural and Biological Chemistry, 31, 513–518.

    Article  Google Scholar 

  25. Sharma, S., Agarwal, L., & Saxena, R. K. (2008). Bioresource Technology, 99, 2544–2551. doi:10.1016/j.biortech.2007.04.035.

    Article  CAS  Google Scholar 

  26. Davidson, J., & Schiestl, R. (2000). Cancer Cell Biology. 665 Huntington Avenue, Boston, MA 02115, USA: Harvard School Public Health.

    Google Scholar 

  27. Sharma, S., Bhat, T. K., & Dawra, R. K. (1999). World Journal of Microbiology and Biotechnology, 15, 673–677. doi:10.1023/A:1008939816281.

    Article  CAS  Google Scholar 

  28. Mondal, K. C., Banerjee, D., Banerjee, R., & Pati, B. R. (2001). Journal of General and Applied Microbiology, 47, 263–267. doi:10.2323/jgam.47.263.

    Article  CAS  Google Scholar 

  29. Kasieczka-Burnecka, M., Kuc, K., Kalinowska, H., Knap, M., & Turkiewicz, M. (2007). Applied Microbiology and Biotechnology, 77, 77–89. doi:10.1007/s00253-007-1124-4.

    Article  CAS  Google Scholar 

  30. Ramirez-Coronel, M. A., Viniegra-Gonzalez, G., Darvill, A., & Augur, C. (2003). Microbiology, 149, 2941–2946. doi:10.1099/mic.0.26346-0.

    Article  CAS  Google Scholar 

  31. BeeNa, P. S., Soorej, M. B., Elyas, K. K., Sarita, G. B., & Chandrasekaran, M. (2010). Journal of Microbiology and Biotechnology, 20, 1403–1414. doi:10.4014/jmb.1004.04038.

    Article  CAS  Google Scholar 

  32. Iwamoto, K., Tsuruta, H., Nishitaini, Y., & Osawa, R. (2008). Systematic and Applied Microbiology, 31, 269–277. doi:10.1016/j.syapm.2008.05.004.

    Article  CAS  Google Scholar 

  33. Barthomeuf, C., Regerat, F., & Pourrat, H. (1994). Journal of Fermentation and Bioengineering, 77, 320–323. doi:10.1016/0922-338X(94)90242-9.

    Article  CAS  Google Scholar 

  34. Yamada, H., Adachi, O., Watanabe, M., & Sato, N. (1968). Agricultural and Biological Chemistry, 32, 1070–1078.

    Article  CAS  Google Scholar 

  35. Abdel-Naby, M. A., Sherif, A. A., El-Tanash, A. B., & Mankarios, A. T. (1999). Journal of Applied Microbiology, 87, 108–114. doi:10.1046/j.1365-2672.1999.00799.x.

    Article  CAS  Google Scholar 

  36. Dixon, M., & Webb, E. C. (1966). Enzymes. London: Longman Green & Co.

    Google Scholar 

  37. Zhong, X., Peng, L., Zheng, S., et al. (2004). Protein Expression and Purification, 36, 165–169. doi:10.1016/j.pep.2004.04.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tarbiat Modares University of Iran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Hamidi-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakipour-Molkabadi, E., Hamidi-Esfahani, Z., Sahari, M.A. et al. Improvement of Strain Penicillium sp. EZ-ZH190 for Tannase Production by Induced Mutation. Appl Biochem Biotechnol 171, 1376–1389 (2013). https://doi.org/10.1007/s12010-013-0436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0436-3

Keywords

Navigation