Skip to main content
Log in

Partial Oxidative Conversion of Methane to Methanol Through Selective Inhibition of Methanol Dehydrogenase in Methanotrophic Consortium from Landfill Cover Soil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Themelis, N. J., & Ulloa, P. A. (2007). Renew Energ, 32, 1243–1257.

    Article  CAS  Google Scholar 

  2. Bruno, J. C., Ortega-López, V., & Coronas, A. (2009). Appl Energ, 86, 837–847.

    Article  CAS  Google Scholar 

  3. Bajic, Z. and Zeiss, C. (2006), in Proceedings from the 24th annual landfill gas symposium, Dallas, USA.

  4. Ayalon, O., Avnimelech, Y., & Shechter, M. (2001). Environmental Management, 27, 697–704.

    Article  CAS  Google Scholar 

  5. Haubrichs, R., & Widmann, R. (2006). Waste Management, 26, 408–416.

    Article  CAS  Google Scholar 

  6. Lee, S., Speight, J. G., & Loyalka, S. K. (2007). Hand book of alternative fuel technologies. New York: CRC.

    Book  Google Scholar 

  7. Roan, V., Bett, D., Twining, A., Dinh, K., Wassink, P. and Simmona, T. (2004) in Proceedings of 3rd International Energy Conversion Engineering Conference, Gainesville, Florida, USA.

  8. Hanson, R. S., & Hanson, T. E. (1996). Microbiological Reviews, 60, 439–471.

    CAS  Google Scholar 

  9. Kim, H. G., Han, G. H., & Kim, S. W. (2010). Biotechnology and Bioprocess Engineering, 15, 476–480.

    Article  CAS  Google Scholar 

  10. Frank, J., Jr., van Krimpen, S. H., Verwiel, P. E., Jongejan, J. A., Mulder, A. C., & Duine, J. A. (1989). European Journal of Biochemistry, 184, 187–195.

    Article  CAS  Google Scholar 

  11. Shimoda, M., & Okura, I. (1991). Journal of Molecular Catalysis, 64, L23–L25.

    Article  CAS  Google Scholar 

  12. Shimoda, M., Nemoto, S., & Okura, I. (1991). J Mole Catal, 64, 373–380.

    Article  CAS  Google Scholar 

  13. Lee, S. G., Goo, J. H., Kim, H. G., Oh, J. I., Kim, Y. M., & Kim, S. W. (2004). Biotechnology Letters, 26, 947–950.

    Article  CAS  Google Scholar 

  14. Xin, J. Y., Cui, J. R., Niu, J. Z., Hua, S. F., Xia, C. G., Li, S. B., & Zhu, L. M. (2004). Biocatalysis and Biotransformation, 22, 225–229.

    Article  CAS  Google Scholar 

  15. Duan, C., Luo, M., & Xing, X. (2011). Bioresource Technology, 102, 7349–7353.

    Article  CAS  Google Scholar 

  16. Pettigrew, G. W., & Moore, G. R. (1987). Cytochrome c: biological aspects (pp. 29–113). New York: Springer.

    Google Scholar 

  17. Chan, H. T. C., & Anthony, C. (1992). FEMS Microbiology Letters, 96, 231–234.

    Article  CAS  Google Scholar 

  18. Takeguchi, M., Furuto, T., Sugimori, D., & Okura, I. (1997). Applied Biochemistry and Biotechnology, 68, 143–152.

    Article  CAS  Google Scholar 

  19. Mehta, P. K., Mishra, S., & Ghose, T. K. (1987). The Journal of General and Applied Microbiology, 33, 221–229.

    Article  CAS  Google Scholar 

  20. Park, S. H., & Choo, S. Y. (1993). Korean J Biotechnol Bioeng, 8(4), 341–350.

    Google Scholar 

  21. Xing, X. H., Wu, H., Luo, M. F., & Wang, B. P. (2006). Biochemical Engineering Journal, 31, 113–117.

    Article  CAS  Google Scholar 

  22. Semrau, J. D., DiSpirito, A. A., & Yoon, S. (2010). FEMS Microbiology Reviews, 34, 496–531.

    CAS  Google Scholar 

  23. Morton, J., Hayes, K., & Semrau, J. D. (2000). Applied and Environmental Microbiology, 66, 1730–1733.

    Article  CAS  Google Scholar 

  24. Hutchens, E., Radajewski, S., Dumont, M. G., McDonald, I. R., & Murrell, J. C. (2004). Environmental Microbiology, 6, 111–120.

    Article  CAS  Google Scholar 

  25. Mcdonald, I. R., & Murrell, J. C. (1997). Applied and Environmental Microbiology, 63, 3218–3224.

    CAS  Google Scholar 

  26. Carver, M. K., Humphrey, K. M., Patchett, R. A., & Jones, C. W. (1984). European Journal of Biochemistry, 138, 611–615.

    Article  CAS  Google Scholar 

  27. Yoo, Y. S., Han, J. S., Ahn, C. M., Min, D. H., Mo, W. J., Yoon, S. U., Lee, J. G., Lee, J. Y., & Kim, C. G. (2011). J Korean Soc Environ Eng, 33, 662–669.

    Google Scholar 

  28. Ali, H., Scanlan, J., Dumont, M. G., & Murrell, J. C. (2006). Microbiology, 152, 2931–2942.

    Article  CAS  Google Scholar 

  29. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

    Google Scholar 

  30. Dales, S. L., & Anthony, C. (1995). The Biochemical Journal, 312, 261–265.

    CAS  Google Scholar 

  31. Sugimori, D., Takeguchi, M., & Okura, I. (1995). Biotechnology Letters, 17, 783–784.

    Article  CAS  Google Scholar 

  32. Markowska, A., & Michalkiewicz, B. (2009). Chemical Papers, 63, 105–110.

    Article  CAS  Google Scholar 

  33. Knief, C., Kolb, S., Bodelier, P. L., Lipski, A., & Dunfield, P. F. (2006). Environmental Microbiology, 8, 321–333.

    Article  CAS  Google Scholar 

  34. Cebron, A., Bodrossy, L., Stralis-Pavese, N., Singer, A. C., Thompson, I. P., Prosser, J. I., & Murrell, J. C. (2007). Applied and Environmental Microbiology, 73, 798–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support from the Korea Ministry of Environment (MOE) as “Human resource development Project for Waste to Energy” and also partially supported by INHA University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Gyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JS., Ahn, CM., Mahanty, B. et al. Partial Oxidative Conversion of Methane to Methanol Through Selective Inhibition of Methanol Dehydrogenase in Methanotrophic Consortium from Landfill Cover Soil. Appl Biochem Biotechnol 171, 1487–1499 (2013). https://doi.org/10.1007/s12010-013-0410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0410-0

Keywords

Navigation