Skip to main content
Log in

Production of Bioethanol from Fermented Sugars of Sugarcane Bagasse Produced by Lignocellulolytic Enzymes of Exiguobacterium sp. VSG-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exiguobacterium sp. VSG-1 was isolated from the soil sample and characterized for the production of lignocellulolytic enzymes. Production of these enzymes by the strain VSG-1 was carried out using steam-exploded sugarcane bagasse (SCB) and found to secrete cellulase, pectinase, mannanase, xylanase, and tannase. The growth and enzyme production were found to be optimum at pH 9.0 and 37 °C. Upon steam explosion of SCB, the cellulose increased by 42 %, whereas hemicelluloses and lignin decreased by 40 and 62 %, respectively. Enzymatic hydrolysis of steam-exploded SCB yielded 640 g/l of total sugars. Fermentation of sugars produced from pretreated SCB was carried out by using Saccharomyces cerevisiae at pH 5.0 and 30 °C. The alcohol produced was calculated and found to be 62.24 g/l corresponding to 78 % of the theoretical yield of ethanol. Hence, the strain VSG-1 has an industrial importance for the production of fermentable sugars for biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dale, B. E., Henk, L. L., & Shiang, M. (1984). Developments in Industrial Microbiology, 26, 223–233.

    Google Scholar 

  2. Wright, J. D. (1998). Chemical Engineering Progress, 84, 62–74.

    Google Scholar 

  3. Azzam, A. M. (1989). Journal of Environmental Science and Health, B24, 421–433.

    CAS  Google Scholar 

  4. Cadoche, L., & Lopez, G. D. (1989). Boil Wastes, 30, 153–157.

    Article  CAS  Google Scholar 

  5. Reshamwala, S., Shawky, B. T., & Dale, B. E. (1995). Applied Biochemistry and Biotechnology, 51(52), 43–55.

    Article  Google Scholar 

  6. Bjerre, A. B., Oleson, A. B., & Fernqvist, T. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  7. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  8. Liu, Z., Saha, B., & Slininger, P. (2008). Lignocellulolytic biomass conversion to ethanol by Saccharomyces. In J. Wall, C. Harwood, & A. Demain (Eds.), Bioenergy (pp. 17–36). Washington, DC: ASM.

    Google Scholar 

  9. Taherzadeh, M. J., & Karimi, K. (2007). Bioresources, 2, 472–499.

    CAS  Google Scholar 

  10. Mcmillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds). Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp. 292–324.

  11. Holtzappole, M. T., Humphrey, A. E., & Taylor, J. D. (1989). Biotechnology and Bioengineering, 33, 207–210.

    Article  Google Scholar 

  12. Clark, T. A., & Machie, K. L. (1987). Journal of Wood Chemistry and Technology, 7, 373–403.

    Article  CAS  Google Scholar 

  13. Chahal, D. S., Kennedy, et al. (1992). Bioconversions of polysaccharides of lignocelluloses and simultaneous degradation of lignin. In Lignocellulosics: science, technology, development and use (pp. 83–93). England: Ellis Horwood.

    Google Scholar 

  14. Grethlein, H. E., & Converse, A. O. (1991). Bioresource Technology, 36, 77–82.

    Article  CAS  Google Scholar 

  15. Bisaria, V. S. (1991). Bioprocessing of agro-residues to glucose and chemicals. In A. M. Martin (Ed.), Bioconversion of waste materials to industrial products (pp. 210–213). London: Elsevier.

    Google Scholar 

  16. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  17. Tamaru, Y., Miyake, H., Kuroda, K., Ueda, M., & Doi, R. H. (2010). Environmental Technology, 31, 889–903.

    Article  CAS  Google Scholar 

  18. Daniel, G. F., & Nilsson, T. (1998). Developments in the study of soft rot and bacterial decay. In A. Bruce & J. W. Palfreyman (Eds.), Forest products biotechnology (p. 326). London: Taylor and Francis.

    Google Scholar 

  19. Akin, D. E., Rigsby, L. L., & Sethuraman, A. (1995). Applied and Environmental Microbiology, 61, 1591–1598.

    CAS  Google Scholar 

  20. Ng, T. K., & Zeikus, J. G. (1981). Applied and Environmental Microbiology, 42, 231–240.

    CAS  Google Scholar 

  21. Kim, C. H., & Kim, D. S. (1993). Applied Biochemistry and Biotechnology, 42, 83–94.

    Article  CAS  Google Scholar 

  22. Beukes, N., & Pletschke, B. I. (2006). FEMS Microbiology Letters, 264, 226–231.

    Article  CAS  Google Scholar 

  23. Pason, P., & Kyu, K. L. (2006). Applied and Environmental Microbiology, 72, 2483–2490.

    Article  CAS  Google Scholar 

  24. Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). The New Phytologist, 178, 473–485.

    Article  CAS  Google Scholar 

  25. Kadam, K. L., & McMillan, J. D. (2003). Bioresource Technology, 88, 17–25.

    Article  CAS  Google Scholar 

  26. Rosillo-Calle, F., & Cortez, L. (1998). Biomass and Bioenergy, 14, 115–124.

    Article  CAS  Google Scholar 

  27. McDonald, T., Yowell, G., McCormack, M. (2001). Staff report. US ethanol industry production capacity outlook. California energy commission. Available at http://www.energy.ca.gov/reports/2001-08-29_600-01-017.PDF.

  28. Holding, A. J., Shewan, J. M. (1974). Genera of uncertain affiliation. In: Bergey’s manual of determinative bacteriology, 8th edn. William and Wilkins, Baltimore.

  29. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  30. Lowry, O. H., Roserough, N. J., Farr, A. L., & Randal, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  31. Scott, T. A., & Melvin, E. H. (1953). Analytical Chemistry, 25, 1656–1661.

    Article  CAS  Google Scholar 

  32. Vernon, L. S., Rudolf, O., & Rosa, M. L. R. (1999). Oxidants and Antioxidants Part A, 299, 152–178.

    Article  Google Scholar 

  33. Caputi, A. J., Ueda, M., & Brown, T. (1968). American Journal of Enology and Viticulture, 19, 160.

    CAS  Google Scholar 

  34. Gunasekaran, P., & Kamini, N. R. (1991). World Journal of Microbiology and Biotechnology, 7, 551–556.

    Article  CAS  Google Scholar 

  35. Vishnivetskaya, T. A., Siletzky, R., Jefferies, N., Tiedje, J. M., & Kathariou, S. (2007). Cryobiology, 54, 234–240.

    Article  CAS  Google Scholar 

  36. Ponder, M. A., Thomashow, M. F., & Tiedje, J. M. (2008). Extremophiles, 12, 481–490.

    Article  CAS  Google Scholar 

  37. Ragauskas, A. J., Williams, C. K., Daqvison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallet, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  38. Maki, M., Broere, M., Leung, K. T., & Qin, W. (2011). International Journal of Biochemistry and Molecular Biology, 2, 146–154.

    CAS  Google Scholar 

  39. Kim, T. H., & Lee, Y. Y. (2005). Bioresource Technology, 97, 224–232.

    Article  Google Scholar 

  40. Beguin, P., & Aubert, J. P. (1994). FEMS Microbiology Reviews, 13, 25–58.

    Article  CAS  Google Scholar 

  41. Ander, P., & Eriksson, K. E. (1977). Plant Physiology, 41, 239–248.

    Article  CAS  Google Scholar 

  42. Beldman, G., Voragen, A. G. J., Rombouts, F. M., & Pilnik, W. (1988). Biotechnology and Bioengineering, 31, 173–178.

    Article  CAS  Google Scholar 

  43. Excoffier, G., Toussaint, B., & Vignon, M. R. (1991). Biotechnology and Bioengineering, 38, 1308–1317.

    Article  CAS  Google Scholar 

  44. Xin, Z., Yinbo, Q., & Peiji, G. (1993). Enzyme and Microbial Technology, 15, 62–65.

    Article  Google Scholar 

  45. Manonmani, H. K., & Sreekantiah, K. R. (1987). Enzyme and Microbial Technology, 9, 484–488.

    Article  CAS  Google Scholar 

  46. Ramos, J. P., Breuil, C., & Saddler, J. N. (1993). Enzyme and Microbial Technology, 15, 19–25.

    Article  CAS  Google Scholar 

  47. Kurukake, M., Kisaka, W., Ouchi, K., & Komaki, T. (2001). Applied Biochemistry and Biotechnology, 90, 251–259.

    Article  Google Scholar 

  48. Salvi, D. A., Aita, G. M., Robert, V., & Bazan, V. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 27–34.

    Article  CAS  Google Scholar 

  49. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  50. Gibbons, W. R., Westby, C. A., & Dobbs, T. L. (1986). Applied and Environmental Microbiology, 51, 115–122.

    CAS  Google Scholar 

  51. Mamma, D., Christakopoulos, P., Koullas Kekos, D., Macris, B. J., & Kouki, E. (1995). Biomass and Bioenergy, 8, 99–103.

    Article  CAS  Google Scholar 

  52. Shaibani, N., Ghazvini, S., Andalibi, M. R., & Yaghmari, S. (2011). World Academy of Science, Engineering and Technology, 59, 1836–1839.

    Google Scholar 

Download references

Acknowledgments

This research was supported by research grants to KS from DST and UGC-SAP, the Government of India, New Delhi. VS thank UGC-SAP for providing JRF. We are grateful to Dr. Anu Appaiah for providing facilities to carry out the experiments in CFTRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreeramulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalaxmi, S., Anu Appaiah, K.A., Jayalakshmi, S.K. et al. Production of Bioethanol from Fermented Sugars of Sugarcane Bagasse Produced by Lignocellulolytic Enzymes of Exiguobacterium sp. VSG-1. Appl Biochem Biotechnol 171, 246–260 (2013). https://doi.org/10.1007/s12010-013-0366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0366-0

Keywords

Navigation