Skip to main content
Log in

A Chemiluminescence Microarray Based on Catalysis by CeO2 Nanoparticles and Its Application to Determine the Rate of Removal of Hydrogen Peroxide by Human Erythrocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, cerium oxide nanoparticles are capable of strongly enhancing the chemiluminescence (CL) of the luminol–hydrogen peroxide (H2O2) system. Based on this, a microarray CL method for the determination of the removal rate constant of H2O2 by human erythrocytes has been developed. It is providing direct evidence for a H2O2-removing enzyme in human erythrocytes that acts as the predominant catalyst. A reaction mechanism is discussed. The proposed microarray CL method is sensitive, selective, simple and time-saving, and has good reproducibility and high throughput. Relative CL intensity is linearly related to the concentration of H2O2 in the range from 0.01 to 50 μM. The limit of detection is as low as 6.5 × 10−11 M (3σ), and the relative standard deviation is 2. 1 % at 1 μM levels of H2O2 (for n = 11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Halbach, S., Ballatori, N., & Clarkson, T. W. (1988). Mercury vapor uptake and hydrogen peroxide detoxification in human and mouse red blood cells. Toxicology and Applied Pharmacology, 96, 517–524.

    Article  CAS  Google Scholar 

  2. Madjdpour, C., Jewell, U. R., Kneller, S., Zeigler, U., & Schwendener, R. (2003). Decreased alveolar oxygen induces lung inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284, L360–L367.

    CAS  Google Scholar 

  3. Nicholls, P. (1972). Contributions of catalase and glutathione peroxidase to red cell peroxide removal. Biochimica et Biophysica Acta, 279, 306–309.

    Article  CAS  Google Scholar 

  4. Takahara, S., Mihara, S., Tsugawa, K., & Doi, M. (1952). Acatalasemia II contents of catalase in blood and tissues of men and animals. Proceedings of the Japan Academy, 28, 383–387.

    CAS  Google Scholar 

  5. Takahara, S. (1952). Acatalasemia. Lancet, 2, 1101–1106.

    Article  CAS  Google Scholar 

  6. Abramov, J. P., & Wells, P. G. (2011). Embryoprotective role of endogenous catalase in acatalasemic and human catalase-expressing mouse embryos exposed in culture to developmental and phenytoin-enhanced oxidative stress. Toxicological Sciences, 120, 428–438.

    Article  CAS  Google Scholar 

  7. Gaetani, G. F., Galiano, S., Canepa, L., Ferraris, A. M., & Kirkman, H. N. (1989). Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood, 73, 334–339.

    CAS  Google Scholar 

  8. Makino, N., Mochizuki, Y., Bannai, S., & Sugita, Y. (1994). Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts. Journal of Biological Chemistry, 269, 1020–1025.

    CAS  Google Scholar 

  9. Nakano, T., & Takahashi, A. (1990). Spectrophotometric determination of hydrogen peroxide by the formation of indamine dye with the catalyst of water-soluble ironporphyrin. Analytical Sciences, 6, 823–826.

    Article  CAS  Google Scholar 

  10. Scott, M. D., Lubin, B. H., Zuo, L., & Kuypers, F. A. (1991). Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. The Journal of Laboratory and Clinical Medicine, 118, 7–16.

    CAS  Google Scholar 

  11. Masuoka, N., Kodama, H., Abe, T., Wang, D. H., & Nakano, T. (2003). Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides. Biochimica et Biophysica Acta, 1637, 46–54.

    Article  CAS  Google Scholar 

  12. Ng, C. F., Freya, Q. S., Buettner, G. R., & Rodgers, V. G. J. (2007). The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radical Research, 41, 1201–1211.

    Article  CAS  Google Scholar 

  13. Okoko, T., & Diepreye, E. (2012). Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract. Asian Pacific Journal of Tropical Biomedicine, 449–453.

  14. Nagababu, E., Chrest, F. J., & Rifkind, J. M. (2003). Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochimica et Biophysica Acta, 1620, 211–217.

    Article  CAS  Google Scholar 

  15. Imagawa, H., & Sun, S. H. (2012). Controlled synthesis of monodisperse CeO2 nanoplates developed from assembled nanoparticles. Journal of Physical Chemistry C, 116, 2761–2765.

    Article  CAS  Google Scholar 

  16. Lin, X. J., Zhou, L., Huang, T., & Yu, A. S. (2012). Cerium oxides as oxygen reduction catalysts for lithium-air batteries. International Journal of Electrochemical Science, 7, 9550–9559.

    CAS  Google Scholar 

  17. Liu, X. M., Gao, W. L., & Zhang, J. (2011). Facile synthesis of monodispersed CeO2 nanostructures. Journal of Physics and Chemistry of Solids, 72, 1472–1476.

    Article  CAS  Google Scholar 

  18. Abdelrahim, M., Yahia, M., Benjamin, S. R., Cubillana-Aguilera, L. M., Naranjo-Rodriguez, I., Hidalgo-Hidalgo, D. C., et al. (2013). Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a sonogel–carbon material as supporting electrode: electroanalytical study in apple juice for babies. Sensors, 13, 4979–5007.

    Article  CAS  Google Scholar 

  19. Arul, N. S., Mangalaraj, D., & Kim, T. W. (2013). Solvothermal synthesis of hierarchically porous CeO2 nanopalm leaves and their photocatalytic properties. Journal of Sol–gel Science and Technology, 66, 15–21.

    Article  CAS  Google Scholar 

  20. Deng, M. J., Huang, F. L., Sun, I. W., Tsai, W. T., & Chang, J. K. (2009). An entirely electrochemical preparation of a nanostructured cobalt oxide electrode with superior redox activity. Nanotechnology, 20, 175602.

    Article  Google Scholar 

  21. Wang, Z. H., Teng, X., & Lu, C. (2013). Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix. Analytical Chemistry, 85, 2436–2442.

    Article  CAS  Google Scholar 

  22. Li, X., Liu, H. Y., He, X. L., & Song, Z. H. (2010). Determination of cytochrome cin human serum and pharmaceutical injections using flow injection chemiluminescence. Applied Biochemistry and Biotechnology, 160, 1065–1073.

    Article  CAS  Google Scholar 

  23. Li, X. M., Sun, L., Ge, A. Q., & Guo, Y. S. (2011). Enhanced chemiluminescence detection of thrombin based on cerium oxide nanoparticles. Chemical Communications, 47, 947–949.

    Article  CAS  Google Scholar 

  24. Jia, Y. Y. (2011). Study on surface coating and shape control of metal oxides nanoparticles. Master thesis, Yan Tai University, China.

  25. Yuan, J. H., & Shiller, A. M. (1999). Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Analytical Chemistry, 71, 1975–1980.

    Article  CAS  Google Scholar 

  26. Chen, W., Hong, L., Liu, A. L., Liu, J. Q., Lin, X. H., & Xia, X. H. (2012). Enhanced chemiluminescence of the luminol–hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta, 99, 643–648.

    Article  CAS  Google Scholar 

  27. Lin, C., Ritter, J. A., & Popov, B. N. (1998). Characterization of sol–gel-derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society, 145, 4097–4103.

    Article  CAS  Google Scholar 

  28. Barbero, C., Planes, G. A., & Miras, M. C. (2001). Redox-coupled ion exchange in cobalt oxide films. Electrochemistry Communications, 3, 113–116.

    Article  CAS  Google Scholar 

  29. Mul, G., Zhu, W. D., Kapteijn, F., & Moulijn, J. A. (1998). The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon blank oxidation: an exploratory study. Applied Catalysis B: Environmental, 17, 205–220.

    Article  CAS  Google Scholar 

  30. Patil, D., Dung, N. Q., Jung, H., Ahn, S. Y., Jang, D. M., & Kim, D. (2012). Enzymatic glucose biosensor based on CeO2 nanorods synthesized by nonisothermal precipitation. Biosensors and Bioelectronics, 31, 176–181.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Fundamental Research Funds for the Central Universities (program no. GK20091004) and National Natural Science Foundation of China (no. 30872371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, Z., Tao, L. et al. A Chemiluminescence Microarray Based on Catalysis by CeO2 Nanoparticles and Its Application to Determine the Rate of Removal of Hydrogen Peroxide by Human Erythrocytes. Appl Biochem Biotechnol 171, 63–71 (2013). https://doi.org/10.1007/s12010-013-0345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0345-5

Keywords

Navigation