Skip to main content
Log in

Isolation and Cultivation of a Xylanolytic Bacillus subtilis Extracted from the Gut of the Termite Reticulitermes santonensis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was the isolation of xylanolytic microorganisms from the digestive tract of the termite Reticulitermes santonensis. The reducing sugars released after the hydrolysis of xylans can be further fermented to provide bioethanol. A xylanolytic strain of Bacillus subtilis was isolated from the hindgut of the termite and displayed amylase and xylanase activities. The bacterium was grown on media containing agricultural residues: wheat bran, wheat distiller’s grains, and rapeseed oil cake. Wheat bran led to the highest induction of xylanase activity, although the development of the strain was less fast than in the other media. It was possible to reach maximal xylanase activities of 44.3, 33.5, and 29.1 I.U./ml in the media containing wheat bran, wheat distiller’s grains, and rapeseed oil cake, respectively. Mass spectrometry identified a wide range of xylose oligomers, highlighting an endoxylanase activity. The enzyme was stable up to 45 °C and displayed an optimal pH close to 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brune, A., & Ohkuma, M. (2010). In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: a modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  2. Nation, J. L. (2008). In J. L. Capinera (Ed.), Encyclopedia of entomology, 2nd edn (pp. 111–119). Dordrecht: Springer.

    Google Scholar 

  3. Tartar, A., Wheeler, M. M., Zhou, X., Coy, M. R., Boucias, D. G., & Scharf, M. E. (2009). Biotechnology and Biofuels, 2, 1–19.

    Article  CAS  Google Scholar 

  4. Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin: Springer.

    Book  Google Scholar 

  5. Morrell, J. J., & Gartner, B. L. (1998). Wood as a material. In A. Bruce & J. W. Palfreyman (Eds.), Forest products biotechnology (pp. 1–14). London: Taylor and Francis Ltd.

    Google Scholar 

  6. Gilbert, M., Yaguchi, M., Watson, D. C., Wong, K. K. Y., Breuil, C., & Saddler, J. N. (1993). Applied Microbiology and Biotechnology, 40, 508–514.

    Article  CAS  Google Scholar 

  7. Coughlan, M. P., & Hazlewood, G. (1993). Biotechnology and Applied Biochemistry, 17, 259–289.

    CAS  Google Scholar 

  8. Whistler, R. L., & Richards, E. L. (1970). In W. Pigman & D. Horton (Eds.), The carbohydrates: chemistry and biochemistry (2nd ed., Vol. IIA, pp. 447–469). New York: Academic Press.

    Google Scholar 

  9. Hoegger, P.J., Majcherczyk, A., Dwivedi, R.C., Svobodova, K., Kilaru, S. and Kues, U. (2007), Wood Production, Wood Technology and Biotechnological Impacts. In: Kues U (ed) Ursula Kues, University of Göttingen, Germany. pp. 383–432.

  10. Amani, M. D., El Ahwany, E. I., & Youssef, A. S. (2007). Research Journal of Agriculture and Biological Sciences, 3, 727–732.

    Google Scholar 

  11. Ahlawat, S., Battan, B., Sudha Dhiman, S., Sharma, J., & Pal Mandhan, R. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 763–770.

    Article  CAS  Google Scholar 

  12. Bailey, M. J., Buchert, J., & Viikari, L. (1993). Applied Microbiology and Biotechnology, 40, 224–229.

    Article  CAS  Google Scholar 

  13. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  14. Matsushika, A., & Sawayama, S. (2008). Journal of Bioscience and Bioengineering, 3, 306–309.

    Article  CAS  Google Scholar 

  15. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiology Reviews, 52, 305–317.

    CAS  Google Scholar 

  16. Kuhad, R. C., Singh, A., & Eriksson, K. E. L. (1997). Advances in Biochemical Engineering/Biotechnology, 57, 47–125.

    Article  Google Scholar 

  17. Lopez-Fernandez, C. L., Rodriguez, J., Ball, A. S., Copa-Patino, J. L., Perez-Leblic, M. I., & Arias, M. E. (1998). Applied Microbiology and Biotechnology, 50, 284–287.

    Article  CAS  Google Scholar 

  18. Kar, S., Mandal, A., Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Brazilian Journal of Microbiology, 37, 462–464.

    Article  CAS  Google Scholar 

  19. Yang, S. Q., Yan, Q. J., Jiang, Z. Q., Li, L. T., Tian, H. M., & Wang, Y. Z. (2006). Bioresource Technology, 97, 1794–1800.

    Article  CAS  Google Scholar 

  20. Khasin, A., Alchanati, I., & Shoham, Y. (1993). Applied and Environmental Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

  21. Dhillon, A., & Khanna, S. (2000). World Journal of Microbiology and Biotechnology, 16, 325–327.

    Article  CAS  Google Scholar 

  22. Battan, B., Sharma, J., Dhiman, S. S., & Kuhad, R. C. (2007). Enzyme and Microbial Technology, 41, 733–739.

    Article  CAS  Google Scholar 

  23. Gupta, U., & Kar, R. (2009). Brazilian Archives of Biology and Technology, 52, 1363–1371.

    Article  CAS  Google Scholar 

  24. Roy, N., & Rowshanul Habib, M. (2009). Iranian Journal of Microbiology, 1, 49–53.

    Google Scholar 

  25. Roberts, M. S., Nakamura, L. K., & Cohan, F. M. (1994). International Journal of Systematic Bacteriology, 44, 256–264.

    Article  CAS  Google Scholar 

  26. Paice, M. G., Bourbonnais, R., Desrochers, M., Jurasek, L., & Yaguchi, M. (1986). Archives of Microbiology, 144, 201–206.

    Article  CAS  Google Scholar 

  27. Huang, J., Wang, G., & Xiao, L. (2006). Bioresource Technology, 97, 802–808.

    Article  CAS  Google Scholar 

  28. Miller, G. R. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  29. Geib, S. M., Tien, M., & Hoover, K. (2010). Insect Science, 17(3), 253–264.

    Article  CAS  Google Scholar 

  30. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  31. Collins, T., Gerday, C., & Feller, G. (2005). Microbiological Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  32. Bataillon, M., Nunes Cardinali, A. P., Castillon, N., & Duchiron, F. (2000). Enzyme and Microbial Technology, 26, 187–192.

    Article  CAS  Google Scholar 

  33. Murakami, M. T., Arni, R. K., Vieira, D. S., Degreve, L., Ruller, R., & Ward, R. J. (2005). FEBS Letters, 579, 6505–6510.

    Article  CAS  Google Scholar 

  34. Jacob, N. (2009). In P. Singh-Nee Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues (pp. 383–396). New York: Springer.

    Chapter  Google Scholar 

  35. Sauvant, D., Institut National de la Recherche Agronomique (France), Institut National Agronomique Paris-Grignon and Association Française de Zootechnie (2004) Tables of composition and nutritional value of feed materials : pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. The Netherlands: Wageningen Academic Pub

  36. Pagès-Xatart-Parès, X. (2008), in Technologies des corps gras (Huiles et graisses végétales) (Techniques de l’Ingénieur, ed.) F6070, pp. 1–19

  37. Sun, X., Liu, Z., Qu, Y., & Li, X. (2008). Applied Biochemistry and Biotechnology, 146, 119–128.

    Article  CAS  Google Scholar 

  38. Peyronnet, C., Crépon, K., Quinsac, A., Loison, J. P., Callu, P., & Vilarino, M. (2009). Journées de la Recherche Porcine, 41, 1–2.

    Google Scholar 

  39. Thaker, P. A., & Petri, D. (2009). Journal of Animal Science, 11, 1531–1539.

    Google Scholar 

  40. Cozannet, P., Primot, Y., Gady, C., Métayer, J. P., Lessire, M., Skiba, F., & Noblet, J. (2010). Journal of Animal Science, 88, 2382–2392.

    Article  CAS  Google Scholar 

  41. Inagaki, K., Nakahira, K., Mukai, K., Tamura, T., & Tanaka, H. (1998). Bioscience, Biotechnology, and Biochemistry, 62, 1061–1067.

    Article  CAS  Google Scholar 

  42. Lo, Y.-C., Lu, W.-C., Chen, C.-Y., Chen, W.-M., & Chang, J.-S. (2010). Biochemical Engineering Journal, 53, 77–84.

    Article  CAS  Google Scholar 

  43. Kamble R.D. and Jadhav A.R. (2012) Asian Pac. J. Trop. Med. S1790-S1797

  44. Heck, J. X., de Barros Soares, L. H., Hertz, P. F., & Ayub, M. A. Z. (2006). Biochemical Engineering Journal, 32, 179–184.

    Article  CAS  Google Scholar 

  45. Qureshy, A. F., Khan, L. A., & Khanna, S. (2000). Enzyme and Microbial Technology, 27, 227–233.

    Article  CAS  Google Scholar 

  46. Esteban, R., Villanueva, J. R., & Villa, T. G. (1982). Canadian Journal of Microbiology, 28, 733–739.

    Article  CAS  Google Scholar 

  47. Lin, X.-Q., Han, S.-Y., Zhang, N., Hu, H., Zheng, S. P., Ye, Y. R., & Lin, Y. (2013). Enzyme and Microbial Technology, 52, 91–98.

    Article  CAS  Google Scholar 

  48. Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). Enzyme and Microbial Technology, 39, 1492–1498.

    Article  CAS  Google Scholar 

  49. Lee, C. C., Kibblewhite-Accinelli, R. E., Smith, M. R., Wagschal, K., Orts, W. J., & Wong, D. W. S. (2008). Current Microbiology, 57, 301–305.

    Article  CAS  Google Scholar 

  50. Bajaj, B. K., & Manhas, K. (2012). Biocatalysis and Agricultural Biotechnology, 1, 330–337.

    Article  CAS  Google Scholar 

  51. Sepahy, A. A., Ghazi, S., & Sepahy, M. A. (2011). Enzyme Research, 2011, 1–9.

    Google Scholar 

  52. Morales, P., Madarro, A., Flors, A., Sendra, J. M., & Perez-Gonzalez, J. A. (1995). Enzyme and Microbial Technology, 17, 424–429.

    Article  CAS  Google Scholar 

  53. Teixeira Duarte, M. C., Alcazar Pellegrino, A. C., Portugal, E. P., Ponezi, A. N., & Teixeira, F. T. (2000). Brazilian Journal of Microbiology, 31, 90–94.

    Google Scholar 

  54. Kapoor, M., Nair, L. M., & Kuhad, R. C. (2008). Biochemical Engineering Journal, 38, 88–97.

    Article  CAS  Google Scholar 

  55. Nagar, S., Gupta, V. K., Kumar, D., Kumar, L., & Kuhad, R. C. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 71–83.

    Article  CAS  Google Scholar 

  56. Nagar, S., Mittal, A., Kumar, D., & Gupta, V. K. (2011). International Journal of Biological Macromolecules, 50, 414–420.

    Article  CAS  Google Scholar 

  57. Cordeiro, C. A. M., Martins, M. L. L., Luciano, A. B., & da Silva, R. F. (2002). Brazilian Archives of Biology and Technology, 4, 413–418.

    Article  Google Scholar 

  58. Sapre, M. P., Jha, H., & Patil, M. B. (2005). World Journal of Microbiology and Biotechnology, 21, 649–654.

    Article  CAS  Google Scholar 

  59. Gessesse, A. (1998). Applied and Environmental Microbiology, 64, 3533–3535.

    CAS  Google Scholar 

  60. Blanco, A., Vidal, T., Colom, J. F., & Javier Pastor, F. I. (1995). Applied and Environmental Microbiology, 61, 4468–4470.

    CAS  Google Scholar 

  61. Lopez, C., Blanco, A., & Javier Pastor, F. I. (1998). Biotechnology Letters, 20, 243–246.

    Article  CAS  Google Scholar 

  62. Ratanakhanokchai, K., Kyu, K. L., & Tanticharoen, M. (1999). Applied and Environmental Microbiology, 65, 694–697.

    CAS  Google Scholar 

  63. Tachaapaikoon, C., Kyu, K. L., & Ratanakhanokchai, K. (2006). Process Biochemistry, 41, 2441–2445.

    Article  CAS  Google Scholar 

  64. Dey, D., Hinge, J., Shendye, A., & Rao, M. (1992). Canadian Journal of Microbiology, 38, 436–442.

    Article  CAS  Google Scholar 

  65. Gupta, M., Vohra, R. M., & Hoondal, G. S. (1992). Biotechnology Letters, 14, 1045–1046.

    Article  CAS  Google Scholar 

  66. Bataillon, M., Nunes-Cardinali, A.-P., & Duchiron, F. (1998). Biotechnology Letters, 20, 1067–1071.

    Article  CAS  Google Scholar 

  67. Okazaki, W., Akiba, T., Horikoshi, K., & Akahoshi, R. (1985). Agricultural and Biological Chemistry, 49, 2033–2039.

    Article  CAS  Google Scholar 

  68. Saleem, M., Rizwan, T. M., Yasmin, R., & Imran, M. (2009). International Biodeterioration and Biodegradation, 63, 1119–1124.

    Article  CAS  Google Scholar 

  69. Anuradha, P., Vijayalakshmi, K., Prasanna, N. D., & Sridevi, K. (2007). Current Science, 92, 1283–1286.

    CAS  Google Scholar 

  70. Annamalai, N., Thavasi, R., Jayalakshmi, S., & Balasubramanian, T. (2009). Indian Journal of Biotechnology, 8, 291–297.

    CAS  Google Scholar 

  71. Sa-Pereira, P., Mesquita, A., Duarte, J. C., Aires Barros, M. R., & Costa-Ferreira, M. (2002). Enzyme and Microbial Technology, 30, 924–933.

    Article  CAS  Google Scholar 

  72. Sanghi, A., Garg, N., Sharma, J., Kuhar, K., Kuhad, R. C., & Gupta, V. K. (2007). World Journal of Microbiology and Biotechnology, 24, 633–640.

    Article  CAS  Google Scholar 

  73. Guo, G., Liu, Z., Xu, J., Liu, J., Dai, X., Xie, D., Peng, K., Feng, X., Duan, S., Zheng, K., Cheng, L., & Fu, Y. (2012). Journal of Basic Microbiology, 52, 419–428.

    Article  CAS  Google Scholar 

  74. Lama, L., Calandrelli, V., Gambacorta, A., & Nicolaus, B. (2004). Research in Microbiology, 155, 283–289.

    Article  CAS  Google Scholar 

  75. Aizawa T., Urai M., Iwabushi N., Nakajima M. and Sunairi M. (2010) 60, 61–66

  76. Khanna, S., & Gauri. (1993). Enzyme and Microbial Technology, 15, 990–995.

    Article  CAS  Google Scholar 

  77. Amaya-Delgado, L., Meija-Castillo, T., Santiago-Hernandez, A., Vega-Estrada, J., Amaya-Delgado, L., Meija-Castillo, T., Santiago-Hernandez, A., Vega-Estrada, J., Amelia, F. G.-S., Xoconostle-Cazares, B., Ruiz-Medrano, R., del Carmen Montes-Horcasitas, M., & Hidalgo-Lara, M. E. (2010). Bioresource Technology, 101, 5539–5545.

    Article  CAS  Google Scholar 

  78. Chaudhary, P., & Deobagkar, D. N. (1997). Biotechnology and Applied Biochemistry, 25, 127–133.

    CAS  Google Scholar 

  79. Kim, D. Y., Han, M. K., Lee, J. S., Oh, H.-W., Park, D.-S., Shin, D.-H., Bae, K. S., Son, K.-H., & Park, H.-Y. (2009). Process Biochemistry, 44, 1055–1059.

    Article  CAS  Google Scholar 

  80. Kamble R.D. and Jadhav A.R. (2012) Asian. Pac. J. Trop. Biomed. S1790-S1797

  81. Prakash, B., Vidyasagar, M., Jayalakshmi, S. K., & Sreeramulu, K. (2011). Journal of Molecular Catalysis B: Enzymatic, 74, 192–198.

    Article  CAS  Google Scholar 

  82. Swaroopa, R. D., & Nand, K. (2000). Process Biochemistry, 36, 355–362.

    Article  Google Scholar 

  83. Akila, G., & Chandra, T. S. (2003). FEMS Microbiology Letters, 219, 63–67.

    Article  CAS  Google Scholar 

  84. Kim, D. Y., Han, M. K., Oh, H.-W., Bae, K. S., Jeong, T.-S., Kim, S. U., Shin, D.-H., Kim, I.-H., Rhee, Y. H., Son, K.-H., & Park, H.-Y. (2010). Bioresource Technology, 101, 8814–8821.

    Article  CAS  Google Scholar 

  85. Khandeparkar, R., & Bhosle, N. B. (2006). Research in Microbiology, 157, 315–325.

    Article  CAS  Google Scholar 

  86. Verma, D., & Satyanarayana, T. (2012). Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  87. Giridhar, P. V., & Chandra, T. S. (2010). Process Biochemistry, 45, 1730–1737.

    Article  CAS  Google Scholar 

  88. Boucherba, N., Benallaoua, S., Copinet, E., Hebal, H., & Duchiron, F. (2010). Process Biochemistry, 46, 519–525.

    Google Scholar 

  89. Xin, F., & He, J. (2013). Bioresource Technology, 135, 309–315.

    Article  CAS  Google Scholar 

  90. Gessesse, A., & Mamo, G. (1998). Journal of Industrial Microbiology and Biotechnology, 20, 210–214.

    Article  CAS  Google Scholar 

  91. Ko, C.-H., Tsai, C.-H., Tu, J., Lee, H.-Y., Ku, L.-T., Kuo, P.-A., & Lai, Y.-K. (2010). Process Biochemistry, 158, 218–225.

    Google Scholar 

  92. Ko, C.-H., Tsai, C.-H., Tu, J., Yang, B.-Y., Hsieh, D.-L., Jane, W.-N., & Shih, T.-L. (2011). International Biodeterioration and Biodegradation, 65, 334–339.

    Article  CAS  Google Scholar 

  93. Hwang, I. T., Lim, H. K., Song, H. Y., Cho, S. J., Chang, J.-S., & Park, N.-J. (2010). Biotechnology Advances, 28, 594–601.

    Article  CAS  Google Scholar 

  94. Kumar, M., Joshi, A., Kashyap, R., & Khanna, S. (2011). Process Biochemistry, 46, 1614–1618.

    Article  CAS  Google Scholar 

  95. Cepeljnik, T., Krizaj, I., & Marinsek-Logar, R. (2004). Enzyme and Microbial Technology, 34, 219–227.

    Article  CAS  Google Scholar 

  96. Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Journal of Applied Microbiology, 88, 325–334.

    Article  CAS  Google Scholar 

  97. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2008). Bioresource Technology, 99, 1252–1258.

    Article  CAS  Google Scholar 

  98. Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lu, Y., & Song, H. (2010). Biochemical Engineering Journal, 52, 71–78.

    Article  CAS  Google Scholar 

  99. Georis, J., Giannotta, F., De Buyl, E., Granier, B., & Frère, J.-M. (2000). Enzyme and Microbial Technology, 26, 178–186.

    Article  CAS  Google Scholar 

  100. Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Girio, F. M., Bon, E. P. S., & Amaral-Collaço, M. T. (2002). Enzyme and Microbial Technology, 31, 549–555.

    Article  CAS  Google Scholar 

  101. Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Journal of Industrial Microbiology and Biotechnology, 24, 396–402.

    Article  CAS  Google Scholar 

  102. Hung, K.-S., Liu, S.-M., Tzou, W.-S., Lin, F.-P., Pan, C.-L., Fang, T.-Y., Sun, K.-H., & Tang, S.-J. (2011). Process Biochemistry, 46, 1257–1263.

    Article  CAS  Google Scholar 

  103. Shao, W., DeBlois, S., & Wiegel, J. (1995). Applied and Environmental Microbiology, 61, 937–940.

    CAS  Google Scholar 

  104. Winterhalter, C., & Liebl, W. (1995). Applied and Environmental Microbiology, 61, 1810–1815.

    CAS  Google Scholar 

  105. Geetha, K., & Gunasekaran, P. (2010). Biotechnology and Bioprocess Engineering, 15, 882–889.

    Article  CAS  Google Scholar 

  106. Gessesse, A., & Mamo, G. (1999). Enzyme and Microbial Technology, 25, 68–72.

    Article  CAS  Google Scholar 

  107. Ikura, Y., & Horikoshi, K. (1987). Agricultural and Biological Chemistry, 51, 3143–3145.

    Article  CAS  Google Scholar 

  108. Balakrishnan, H., Srinivasan, M. C., & Rele, M. V. (1997). Biotechnology Letters, 18, 599–601.

    Article  Google Scholar 

  109. Albertsson, A. C., & Edlund, U. (2011). In D. Plackett (Ed.), Biopolymers: new materials for sustainable films and coatings (pp. 135–150). New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

This work was supported by an ARC contract (Action de Recherche Concertée; agreement Gembloux Agro-Bio Tech no. ARC 08-13/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Tarayre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarayre, C., Brognaux, A., Brasseur, C. et al. Isolation and Cultivation of a Xylanolytic Bacillus subtilis Extracted from the Gut of the Termite Reticulitermes santonensis . Appl Biochem Biotechnol 171, 225–245 (2013). https://doi.org/10.1007/s12010-013-0337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0337-5

Keywords

Navigation