Skip to main content
Log in

Electrophoretic Deposition of Multi-walled Carbon Nanotube on a Stainless Steel Electrode for use in Sediment Microbial Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m−2, which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Logan, B. E., & Regan, J. M. (2006). Trends in Microbiology, 14, 512–518.

    Article  CAS  Google Scholar 

  2. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Science, 295, 483–485.

    Article  CAS  Google Scholar 

  3. Reimers, C. E., Tender, L. M., Fertig, S., & Wang, W. (2001). Environmental Science and Technology, 35, 192–195.

    Article  CAS  Google Scholar 

  4. Donovan, C., Dewan, A., Heo, D., & Beyenal, H. (2008). Environmental Science and Technology, 42, 8591–8596.

    Article  CAS  Google Scholar 

  5. Tender, L.M., Gray, S.A., Groveman, E., & Lowy, D.A. (2008). Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J. Journal of Power Sources, 179, 571–575

    Google Scholar 

  6. De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N., & Verstraete, W. (2008). Microbial Biotechnology, 1, 446–462.

    Article  Google Scholar 

  7. Hong, S. W., Kim, H. S., & Chung, T. H. (2010). Environmental Pollution, 158, 185–191.

    Article  CAS  Google Scholar 

  8. Song, T. S., Yan, Z. S., Zhao, Z. W., & Jiang, H. L. (2010). Journal of Chemical Technology and Biotechnology, 85, 1489–1493.

    CAS  Google Scholar 

  9. Holmes, D. E., Bond, D. R., O’Neill, R. A., Reimers, C. E., Tender, L. R., & Lovley, D. R. (2004). Microbial Ecology, 48, 178–190.

    Article  CAS  Google Scholar 

  10. Nielsen, M. E., Reimers, C. E., & Stecher, H. A., III. (2007). Environmental Science and Technology, 41, 7895–7900.

    Article  CAS  Google Scholar 

  11. He, Z., Shao, H. B., & Angenent, L. T. (2007). Biosensors and Bioelectronics, 22, 3252–3255.

    Article  CAS  Google Scholar 

  12. De Schamphelaire, L., Boeckx, P., & Verstraete, W. (2010). Applied Microbiology and Biotechnology, 87, 1675–1687.

    Article  Google Scholar 

  13. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Applied Microbiology and Biotechnology, 79, 43–49.

    Article  CAS  Google Scholar 

  14. Dumas, C., Mollica, A., Féron, D., Basseguy, R., Etcheverry, L., & Bergel, A. (2007). Electrochimica Acta, 53, 468–473.

    Article  CAS  Google Scholar 

  15. Dumas, C., Mollica, A., Féron, D., Basseguy, R., Etcheverry, L., & Bergel, A. (2008). Bioresource Technology, 99, 8887–8894.

    Article  CAS  Google Scholar 

  16. Song, T. S., Yan, Z. S., Zhao, Z. W., & Jiang, H. L. (2011). Bioprocess and Biosystems Engineering, 34, 621–627.

    Article  CAS  Google Scholar 

  17. Liang, P., Wang, H. Y., Xia, X., Huang, X., Mo, Y. H., Cao, X. X., et al. (2011). Biosensors and Bioelectronics, 26, 3000–3004.

    Article  CAS  Google Scholar 

  18. Tsai, H. Y., Wu, C. C., Lee, C. Y., & Shih, E. P. (2009). Journal of Power Sources, 194, 199–205.

    Article  CAS  Google Scholar 

  19. Sharma, T., Leela Mohana Reddy, A., Chandra, T. S., & Ramaprabhu, S. (2008). Int. J. Hydrogen. Energ, 33, 6749–6754.

    Article  CAS  Google Scholar 

  20. Zou, Y. J., Xiang, C. L., Yang, L., Sun, L. X., Xu, F., & Cao, Z. (2008). International Journal of Hydrogen Energy, 33, 4856–4862.

    Article  CAS  Google Scholar 

  21. Feng, C. H., Baili, F., Mai, H. J., & Li, X. Z. (2010). Environmental Science and Technology, 44, 1875–1880.

    Article  CAS  Google Scholar 

  22. Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K., Chung, J. W., Lee, C. Y., et al. (2012). Journal of Applied Electrochemistry, 42, 391–398.

    Article  CAS  Google Scholar 

  23. Van der Biest, O. O., & Vandeperre, L. J. (1999). Annual Review of Materials Science, 29, 327–352.

    Article  Google Scholar 

  24. Boccaccini, A. R., Cho, J., Roether, J. A., Thomas, B. J. C., Minay, E. J., & Shaffer, M. S. P. (2006). Carbon, 44, 3149–3160.

    Article  CAS  Google Scholar 

  25. Song, T. S., & Jiang, H. L. (2011). Bioresource Technology, 102, 10465–10470.

    Article  CAS  Google Scholar 

  26. Goyanes, S., Rubiolo, G. R., Salazar, A., Jimeno, A., Corcuera, M. A., & Mondragon, I. (2007). Diamond and Related Materials, 16, 412–417.

    Article  CAS  Google Scholar 

  27. Cho, J., Konopka, K., Razniatowski, K., Garcia-Lecina, E., Shaffer, M. S. P., & Boccaccini, A. R. (2009). Carbon, 47, 58–67.

    Article  CAS  Google Scholar 

  28. Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, R. A., Demir, G., & Lewandowski, Z. (2006). Environmental Science and Technology, 40, 1062–1068.

    Article  CAS  Google Scholar 

  29. Brewer, L. (1989). Journal of Nuclear Materials, 167, 3–6.

    Article  Google Scholar 

  30. Hong, S. W., Chang, I. S., Choi, Y. S., Kim, B. H., & Chung, T. H. (2009). Bioprocess and Biosystems Engineering, 32, 389–395.

    Article  CAS  Google Scholar 

  31. Martins, G., Peixoto, L., Ribeiro, D. C., Parpot, P., Brito, A. G., & Nogueira, R. (2010). Bioelectrochemistry, 78, 67–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science foundation of China (no. 51209116) and Major State Basic Research Development Program of China (973 Program, no. 2009CB724700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-shun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Ts., Peng-Xiao, Wu, Xy. et al. Electrophoretic Deposition of Multi-walled Carbon Nanotube on a Stainless Steel Electrode for use in Sediment Microbial Fuel Cells. Appl Biochem Biotechnol 170, 1241–1250 (2013). https://doi.org/10.1007/s12010-013-0274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0274-3

Keywords

Navigation