Skip to main content
Log in

Responses from freshwater sediment during electricity generation using microbial fuel cells

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In a two-electrode system, freshwater sediment was used as a fuel to examine the relationship between current generation and organic matter consumption with different types of electrode. Sediment microbial fuel cells using porous electrodes showed a superior performance in terms of generating current when compared with the use of non-porous electrodes. The maximum current densities with thicker and thin porous electrodes were 45.4 and 37.6 mA m−2, respectively, whereas the value with non-porous electrodes was 13.9 mA m−2. The amount of organic matter removed correlated with the current produced. The redox potential in the anode area under closed-circuit conditions was +246.3 ± 67.7 mV, while that under open-circuit conditions only reached −143.0 ± 7.18 mV. This suggests that an application of this system in organic-rich sediment could provide environmental benefits such as decreasing organic matter and prohibiting methane emission in conjunction with electricity production via an anaerobic oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  2. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    Article  CAS  Google Scholar 

  3. Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  4. Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682

    Article  CAS  Google Scholar 

  5. Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234–1237

    Article  CAS  Google Scholar 

  6. Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Article  Google Scholar 

  7. Kim HJ, Hyun MS, Chang IS, Kim BH (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367

    CAS  Google Scholar 

  8. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  9. Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    CAS  Google Scholar 

  10. Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzyme Microb Technol 37:238–245

    Article  CAS  Google Scholar 

  11. Lovley DR (2006) Microbial energizers: fuel cells that keep on going. Microbe 1:323–329

    Google Scholar 

  12. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195

    Article  CAS  Google Scholar 

  13. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  14. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    CAS  Google Scholar 

  15. He Z, Shao HB, Angenent LT (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22:3252–3255

    Article  CAS  Google Scholar 

  16. Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41:4053–4058

    Article  CAS  Google Scholar 

  17. Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042

    Article  CAS  Google Scholar 

  18. Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42:1045–1055

    Article  Google Scholar 

  19. Born SM (1979) Lake rehabilitation: a status report. Environ Manage 3:145–153

    Article  Google Scholar 

  20. Wüest A, Brooks NH, Imboden DM (1992) Bubble plume modeling for lake restoration. Water Resour Res 28:3235–3250

    Article  Google Scholar 

  21. Duchemin E, Lucotte M, Canuel R, Chamberland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the Boreal region. Global Biogeochem Cycles 9:529–540

    Article  CAS  Google Scholar 

  22. Hendzel LL, Matthews CJD, Venkiteswaran JJ, Louis VLS, Burton D, Joyce EM, Bodaly RA (2005) Nitrous oxide fluxes in three experimental boreal forest reservoirs. Environ Sci Technol 39:4353–4360

    Article  CAS  Google Scholar 

  23. Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St. Louis VL, Heyes A, Moore TR, Schiff S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344

    Article  CAS  Google Scholar 

  24. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I. Third assessment report of intergovernmental panel on climate change. Cambridge University Press, Cambridge

  25. Zehnder AJB, Stumm W (1988) In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York

  26. Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192

    CAS  Google Scholar 

  27. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  28. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine-sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    Article  CAS  Google Scholar 

  29. Holmes DE, Bond DR, O’Neill RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    Article  CAS  Google Scholar 

  30. US National Energy Technology Lab (2002) Fuel cell handbook, 6th edn. EG & G, Technical Services Inc., Virginia

    Google Scholar 

  31. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Proc Biochem 39:1007–1012

    Article  CAS  Google Scholar 

  32. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  CAS  Google Scholar 

  33. Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  34. Farquhar GJ, Rovers FA (1973) Gas production during refuse decomposition. Water Air Soil Pollut 2:483–495

    Article  CAS  Google Scholar 

  35. Zhang L, Schryver PD, Gusseme BD, Muynck WD, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12

    Article  CAS  Google Scholar 

  36. Minamikawa K, Sakai N (2005) The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric Ecosyst Environ 107:397–407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Science and Technology institutional research programs, and in part by Seoul National University SIR Group of the BK21 Research Program funded by the Korean Ministry of Education and Human Resources Development and the Korea Science and Engineering Foundation (KOSEF) NRL Program grant funded by the Korea government (MEST) (No. R0A-2008-000-20088-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hak Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.W., Chang, I.S., Choi, Y.S. et al. Responses from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess Biosyst Eng 32, 389–395 (2009). https://doi.org/10.1007/s00449-008-0258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0258-9

Keywords

Navigation