Skip to main content
Log in

Antioxidant, Anti-inflammatory, and Hypoglycemic Effects of the Leaf Extract from Passiflora nitida Kunth

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disease characterized by abnormally high plasma glucose levels, leading to major complications, such as insulin resistance, obesity, hyperlipidemia, and hypertension, also with alterations in the immune and neuronal systems. Brazilian plants have been studied as important sources for new molecules with medicinal properties. The genus Passiflora known as “Maracujá” has been used as a traditional folk medicine for a long time, so an investigation was performed regarding an endemic kind of passion fruit (Passiflora nitida Kunth) from Amazonas, Brazil. Here, we aimed to determine its potential biological activity against metabolic syndrome, oxidative stress, pain, and inflammation. The hydroethanol leaf extract revealed an in vitro α-glucosidase inhibitory activity of 50 % inhibitory concentration (IC50) = 6.78 ± 0.31 μg/mL and an α-amylase inhibition of IC50 = 93.36 ± 4.37. In vivo, experiments of different saccharide tolerance resulted in significant glycemia control and, with alloxan-diabetic mice, resulted in a decrease of total cholesterol, a hypoglycemic effect, and an antioxidant activity by thiobarbituric acid-reactive substances measurement. Also, it decreased the carrageenan-induced edema volume and the rate of writhing as a nociceptive response. These results indicate positive effects of P. nitida extract and its potential to inhibit metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

INPA:

National Institute for Amazonian Research or Instituto Nacional de Pesquisas da Amazônia

VRM:

Vegetable raw material

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

BHT:

Butylated hydroxytoluene

NO:

Nitric oxide

NPS:

Nitroprusside solution

PN:

Passiflora nitida

TBARS:

Thiobarbituric acid-reactive substances

w/v:

Weight per volume

IC50 :

50 % inhibitory concentration

TA:

Tannic acid

COX:

Cyclooxygenase

FAPEAM:

Foundation for the Support of Research in the State of Amazonas

CNPq:

Council for Scientific and Technological Development

INCT:

Institutos Nacionais de Ciência e Tecnologia or National Institutes of Science and Technology

DCR:

Programa de Desenvolvimento Científico Regional or Program of Scientific Regional Development

References

  1. Johnson, L. W., & Weinstock, R. S. (2006). Mayo Clinic Proceedings, 81(12), 1615–1620.

    Article  CAS  Google Scholar 

  2. Kang, D. G., Kim, Y. C., Sohn, E. J., Lee, Y. M., Lee, A. S., Yin, M. H., & Lee, H. S. (2003). Biological and Pharmaceutical Bulletin, 26(9), 1345–1347.

    Article  CAS  Google Scholar 

  3. Ratner, R. E. (2001). American Journal of Cardiology, 88(6), 26–31.

    Article  Google Scholar 

  4. Suffredini, I. B., Paciencia, M. L. B., Varella, A. D., & Younes, R. N. (2006). Brazilian Journal of Infectious Diseases, 10(6), 400–402.

    Google Scholar 

  5. Dhawan, K., Dhawan, S., & Sharma, A. (2004). Journal of Ethnopharmacology, 94, 1–23.

    Article  CAS  Google Scholar 

  6. Carvalho, M. J., Pedrosa, T. N., Guilhon-Simplicio, F., Nunez, C. V., Ohana, D. T., Pereira, M. M., & Lima, E. S. (2010). Acta Amazonica, 40(1), 199–206.

    Article  Google Scholar 

  7. Blois, M. S. (1958). Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  8. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Journal of Analytical Biochemistry, 126, 131–138.

    Article  CAS  Google Scholar 

  9. Ruberto, G., & Baratta, M. T. (2000). Food Chemistry, 69, 167–174.

    Article  CAS  Google Scholar 

  10. Subramanian, R., Asmawi, M. Z., & Sadikun, A. (2008). Acta Biochimica Polonica, 55(2), 391–398.

    CAS  Google Scholar 

  11. Hogan, S., Zhang, L., Li, J., Sun, S., Canning, C., & Zhou, K. (2010). Nutrition and Metabolism (London), 7, 71.

    Article  Google Scholar 

  12. Ventrichelvan, T., Kavimani, S., & Gupta, J. K. (1998). Indian Journal of Pharmaceutical Sciences, 60, 244–245.

    Google Scholar 

  13. Hyvarinen, A., & Nikkila, E. (1962). Clinica Chimica Acta, 7, 140.

    Article  CAS  Google Scholar 

  14. Meyer, E., & Walther, A. (1980). Archives of Hydrobiology, 113, 161–177.

    Google Scholar 

  15. Rappaport, F., & Eichhorn, F. (1960). Clinica Chimica Acta, 5(2), 161–163.

    Article  CAS  Google Scholar 

  16. Hartwig, A., Klyszcz-Nasko, H., Schlepegrell, R., & Beyersmann, D. (1993). Carcinogenesis, 14, 107–112.

    Article  CAS  Google Scholar 

  17. Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Proceedings of the Society for Experimental Biology and Medicine, 111, 544–547.

    Article  CAS  Google Scholar 

  18. Aizza, L. C. B., & Dornelas, M. C. (2011). Journal of Nucleic Acids. doi:10.4061/2011/371517. Article ID 371517, 17 pages.

    Google Scholar 

  19. Kim, S. H., Jo, S. H., Kwon, Y. I., & Hwang, J. K. (2011). Journal of Molecular Sciences, 12(6), 3757–3769.

    Article  CAS  Google Scholar 

  20. Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). Pharmacognosy Review, 5(9), 19–29.

    Article  CAS  Google Scholar 

  21. Akkachiyasit, S., Charoenlertkul, P., Yibchok-Anun, S., & Adisakwattana, S. (2010). International Journal of Molecular Sciences, 11(9), 3387–3396.

    Article  Google Scholar 

  22. Bhat, M., Zinjarde, S., Bhargava, S., Kumar, A., & Joshi, B. (2011). Evidence Based Complementary and Alternative Medicine, 2011, 810207.

    Google Scholar 

  23. Iwai, K. (2008). Plant Foods for Human Nutrition, 63, 163–169.

    Article  CAS  Google Scholar 

  24. Ganz, M. B., & Seftel, A. (2000). American Journal of Physiology, Endocrinology and Metabolism, 278, E146–E152.

    CAS  Google Scholar 

  25. Szkudelski, T. (2001). Physiological Reviews, 50(6), 537–546.

    CAS  Google Scholar 

  26. Pettersson, U. S., Christoffersson, G., Massena, S., Ahl, D., Jansson, L., Henriksnãs, J., & Phillipson, M. (2011). PLoS One, 6(7), e22480.

    Article  CAS  Google Scholar 

  27. Liu, X., Kim, J., Li, Y., Li, J., Liu, F., & Chen, X. (2005). Journal of Nutrition, 135, 165–171.

    CAS  Google Scholar 

  28. Hoult, J. R., & Payá, M. (1996). General Pharmacology, 27(4), 713–722.

    Article  CAS  Google Scholar 

  29. Muniappan, M., & Sundararaj, T. (2003). Journal of Ethnopharmacology, 88(2–3), 161–167.

    Article  CAS  Google Scholar 

  30. Kim, H. P., Son, K. H., Chang, H. W., & Kang, S. S. (2004). Journal of Pharmaceutical Sciences, 96(3), 229–245.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the Foundation for the Support of Research in the State of Amazonas (FAPEAM) and the National Council for Scientific and Technological Development (CNPq). E.S.L. and H.R.M. are members of the INCT de Processos Redox em Biomedicina-Redoxoma (MCT/CNPq). A.P.A.B is a researcher of Programa de Desenvolvimento Científico Regional (DCR-FAPEAM). Jim Hesson of Academic English Solutions.com proofread the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson Silva Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montefusco-Pereira, C.V., de Carvalho, M.J., de Araújo Boleti, A.P. et al. Antioxidant, Anti-inflammatory, and Hypoglycemic Effects of the Leaf Extract from Passiflora nitida Kunth. Appl Biochem Biotechnol 170, 1367–1378 (2013). https://doi.org/10.1007/s12010-013-0271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0271-6

Keywords

Navigation