Skip to main content
Log in

Influence of pH on the Molecular Weight of Poly-3-hydroxybutyric Acid (P3HB) Produced by Recombinant Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of ultrahigh molecular weight poly-3-hydroxybutyric acid (P3HB) from carbohydrates by recombinant Escherichia coli harboring genes from Ralstonia eutropha was evaluated. In shaken-flask experiments, E. coli XL1 Blue harboring plasmid pSK::phaCAB produced P3HB corresponding to 40 and 27 % of cell dry weight from glucose and xylose, respectively. Cultures in bioreactor using glucose as the sole carbon source at variable pH values (6.0, 6.5, or 7.0) allowed the production of P3HB with molecular weight varying between 2.0 and 2.5 MDa. These figures are significantly higher than the values often obtained by natural bacterial strains (0.5–1.0 MDa). Contrary to reports of other authors, no influence of pH was observed on the molecular weight of the polymer produced. Using xylose, P3HB with high molecular weight was also produced, indicating the possibility to produce these polymers from lignocellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4), 450–472.

    CAS  Google Scholar 

  2. Steinbüchel, A. (1991). In D. Byrom (Ed.), Biomaterials: novel materials from biological sources, polyhydroxyalkanoic acids (pp. 123–213). New York: Macmillan.

    Google Scholar 

  3. Slater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436.

    CAS  Google Scholar 

  4. Schubert, P., Steinbüchel, A., & Schlegel, H. G. (1988). Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. Journal of Bacteriology, 170(12), 5837–5847.

    CAS  Google Scholar 

  5. Peoples, O. P., & Sinskey, A. J. (1989). Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoaceyl-CoA reductase. Journal of Biological Chemistry, 264(26), 15293–15297.

    CAS  Google Scholar 

  6. Schubert, P., Krüger, N., & Steinbüchel, A. (1991). Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthesis operon: identification of the N terminus of poly(3-hydroxybutyrate) synthase and the identification of the promoter. Journal of Bacteriology, 173(1), 168–175.

    CAS  Google Scholar 

  7. Baptist, J.N. (1962). Process for preparing poly-beta-hydroxybutyric acid. US Patent 3,036,959.

  8. Byrom, D. (1990). In E. A. Dawes (Ed.), Novel biodegradable microbial polymers, industrial production of copolymers from Alcaligenes eutrophus (pp. 113–117). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  9. Holmes, P. A. (1985). Applications of PHB—microbially produced biodegradable thermoplastic. Physics in Technology, 16(1), 32–36.

    Article  CAS  Google Scholar 

  10. Liebergesell, M., Hustede, E., Timm, A., Steinbüchel, A., Fuller, R. C., Lenz, R. W., et al. (1991). Formation of poly (3-hydroxyalkanoic acids) by phototrophic and chemolithotrophic bacteria. Archives of Microbiology, 155(5), 415–421.

    Article  CAS  Google Scholar 

  11. Kim, G. J., Yun, K. Y., Bae, K. S., & Rhee, Y. H. (1992). Accumulation of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes sp. SH-69 in batch culture. Biotechnology Letters, 14(1), 27–32.

    Article  CAS  Google Scholar 

  12. Aoyagi, Y., Doi, Y., & Iwata, T. (2003). Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: effect of annealing and two-step drawing. Polymer Degradation and Stability, 79(2), 209–216.

    Article  CAS  Google Scholar 

  13. Iwata, T., Tsunoda, K., Aoyagi, Y., Kusaka, S., Yonezawa, N., & Doi, Y. (2003). Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polymer Degradation and Stability, 79(2), 217–224.

    Article  CAS  Google Scholar 

  14. Iwata, T., Aoyagi, Y., Fujita, M., Yamane, H., Doi, Y., Suzuki, Y., et al. (2004). Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-ray diffraction with synchrotron radiation. Macromolecular Rapid Communications, 25(11), 1100–1104.

    Article  CAS  Google Scholar 

  15. Bengtsson, S., Pisco, A. R., Johansson, P., Lemos, P. C., & Reis, M. A. (2010). Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. Journal of Biotechnology, 147(3–4), 172–179.

    Article  CAS  Google Scholar 

  16. Kabe, T., Tsuge, T., Kasuya, K., Takemura, A., Hikima, T., Takata, M., et al. (2012). Physical and structural effects of adding ultrahigh-molecular-weight poly [(R)-3-hydroxybutyrate] to wild-type poly [(R)-3-hydroxybutyrate]. Macromolecules, 45(4), 1858–1865.

    Article  CAS  Google Scholar 

  17. Kusaka, S., Abe, H., Lee, S. Y., & Doi, Y. (1997). Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Applied Microbiology and Biotechnology, 47(2), 140–143.

    Article  CAS  Google Scholar 

  18. Kusaka, S., Iwata, T., & Doi, Y. (1999). Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. International Journal of Biological Macromolecules, 25(1–3), 87–94.

    Article  CAS  Google Scholar 

  19. Sim, S. J., Snell, K. D., Hogan, S. A., Stubbe, J., Rha, C., & Sinskey, A. J. (1997). PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotechnology, 15(1), 63–67.

    Article  CAS  Google Scholar 

  20. Gerngross, T. U., & Martin, D. P. (1995). Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proceedings of the National Academy of Sciences, 92(14), 6279–6283.

    Article  CAS  Google Scholar 

  21. Choi, J. I., & Lee, S. Y. (2004). High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnology and Bioprocess Engineering, 9(3), 196–200.

    Article  CAS  Google Scholar 

  22. Agus, J., Kahar, P., Hyakutake, M., Tomizawa, S., Abe, H., Tsuge, T., et al. (2010). Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polymer Degradation and Stability, 95(12), 2250–2254.

    Article  CAS  Google Scholar 

  23. Tomizawa, S., Hyakutake, M., Saito, Y., Agus, J., Mizuno, K., Abe, H., et al. (2011). Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC subunit of PHA synthase from Bacillus cereus YB-4 in recombinant Escherichia coli. Biomacromolecules, 12(7), 2660–2666.

    Article  CAS  Google Scholar 

  24. Agus, J., Kahar, P., Abe, H., Doi, Y., & Tsuge, T. (2006). Molecular weight characterization of poly [(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polymer Degradation and Stability, 91(5), 1138–1146.

    Article  CAS  Google Scholar 

  25. Wei, X. X., Shi, Z. Y., Yuan, M. Q., & Chen, G. Q. (2009). Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 82(4), 703–712.

    Article  CAS  Google Scholar 

  26. Gomez, J. G. C., Méndez, B. S., Nikel, P. I., Pettinari, M. J., Prieto, M. A., & Silva, L. F. (2012). Making green polymers even greener: towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products. In M. Petre (Ed.), Advances in applied biotechnology (pp. 41–61). Manhattan: InTech.

    Google Scholar 

  27. Nduko, J. M., Suzuki, W., Matsumoto, K., Kobayashi, H., Ooi, T., Fukuoka, A., et al. (2012). Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural. Journal of Bioscience and Bioengineering, 113(1), 70–72.

    Article  CAS  Google Scholar 

  28. Fonseca, G. G., Fonseca, G. G., de Arruda-Caulkins, J. C., & Vasconcellos, A. R. (2008). Production and characterization of poly-(3-hydroxybutyrate) from recombinant Escherichia coli grown on cheap renewable carbon substrates. Waste Management & Research, 26(6), 546–552.

    Article  CAS  Google Scholar 

  29. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    Article  CAS  Google Scholar 

  30. Dias, M. O., Cunha, M. P., Jesus, C. D., Rocha, G. J., Pradella, J. G., Rossell, C. E., et al. (2011). Second generation ethanol in Brazil: can it compete with electricity production? Bioresource Technology, 102(19), 8964–8971.

    Article  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  32. Gomez, J. G. C., Rodrigues, M. F. A., Alli, R. C. P., Torres, B. B., Bueno, C. L., Oliveira, M. S., et al. (1996). Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Applied Microbiology and Biotechnology, 45(6), 785–791.

    Article  CAS  Google Scholar 

  33. Sánchez, R. J., Schripsema, J., Silva, L. F., Taciro, M. K., Pradella, J. G., & Gomez, J. G. C. (2003). Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. European Polymer Journal, 39(7), 1385–1394.

    Article  Google Scholar 

  34. Braunegg, G., Sonnleitner, B., & Lafferty, R. M. (1978). A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. European Journal of Applied Microbiology and Biotechnology, 6(1), 29–37.

    Article  CAS  Google Scholar 

  35. Riis, V., & Mai, W. (1988). Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. Journal of Chromatography, 445, 285–289.

    Article  CAS  Google Scholar 

  36. Silva, L. F., Gomez, J. G., Oliveira, M. S., & Torres, B. B. (2000). Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. Journal of Biotechnology, 76(2–3), 165–174.

    Article  CAS  Google Scholar 

  37. Bullock, W. O., Fernández, J. M., & Short, J. M. (1987). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques, 5, 376–379.

    CAS  Google Scholar 

  38. Kidwell, J., Valentin, H. E., & Dennis, D. (1995). Regulated expression of the Alcaligenes eutrophus PHA biosynthesis genes in Escherichia coli. Applied and Environmental Microbiology, 61(4), 1391–1398.

    CAS  Google Scholar 

  39. Sim, S. J., Sneel, K. D., Kim, B. W., Rha, C. K., & Sinskey, A. J. (2001). Increased poly-β-hydroxybutyrate (PHB) chain length by the modulation of PHA synthase activity in recombinant Escherichia coli. Biotechnology Letters, 23(24), 2057–2061.

    Article  CAS  Google Scholar 

  40. Taguchi, S., Maehara, A., Takase, K., Nakahara, M., Nakumura, H., & Doi, Y. (2001). Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiology Letters, 198(1), 65–71.

    Article  CAS  Google Scholar 

  41. Taguchi, S., Nakamura, H., Hiraishi, T., Yamato, I., & Doi, Y. (2002). In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. Journal of Biochemistry, 131(6), 801–806.

    Article  CAS  Google Scholar 

  42. Hiroe, A., Tsuge, K., Nomura, C. T., Itaya, M., & Tsuge, T. (2012). Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Applied and Environmental Microbiology, 78(9), 3177–3184.

    Article  CAS  Google Scholar 

  43. Pettinari, M. J., Nikel, P. L., Ruiz, J. A., & Méndez, B. S. (2008). ArcA redox mutants as a source of reduced bioproducts. Journal of Molecular Microbiology and Biotechnology, 15(1), 41–47.

    Article  CAS  Google Scholar 

  44. Simon, R., Priefer, U., & Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nature Biotechnology, 1, 784–791.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CNPq-Brazil for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Gregório Cabrera Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocanegra, J.K., da Cruz Pradella, J.G., da Silva, L.F. et al. Influence of pH on the Molecular Weight of Poly-3-hydroxybutyric Acid (P3HB) Produced by Recombinant Escherichia coli . Appl Biochem Biotechnol 170, 1336–1347 (2013). https://doi.org/10.1007/s12010-013-0257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0257-4

Keywords

Navigation