Skip to main content
Log in

Visualizing Hepatic Copper Release in Long–Evans Cinnamon Rats Using Single-Photon Emission Computed Tomography

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential utility of an imaging agent for the detection of hepatic copper was investigated in a Wilson’s disease animal model. Solid-phase peptide synthesis was used to construct an imaging agent which consisted of a copper-binding moiety, taken from the prion protein, and a gamma ray-emitting indium radiolabel. Long–Evans Cinnamon (LEC) rats were used for the Wilson’s disease animal model. Our evaluation methodology consisted of administering the indium-labeled agent to both LEC and genetically healthy Long–Evans (LE) cohorts via a tail vein injection and following the pharmacokinetics with single-photon emission computed tomography (SPECT) over the course of an hour. The animals were then sacrificed and their livers necropsied. An additional control agent, lacking the copper-binding moiety, was used to gauge whether any change in the hepatic uptake might be caused by other physiological differences between the two animal models. LEC rats injected with the indium-labeled agent had roughly double the amount of hepatic radioactivity as compared to the healthy control animals. The control agent, without the copper-binding moiety, displayed a hepatic signal similar to that of the control LE animals. Additional intraperitoneal spiking with CuSO4 in C57BL/6 mice also found that the pharmacokinetics of the indium-labeled, prion-based imaging agent is profoundly altered by exposure to in vivo pools of extracellular copper. The described SPECT application with this compound represented a significant improvement over a previous MRI application using the same base peptide sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kitzberger, R., Madl, C., & Ferenci, P. (2005). Metabolic Brain Disease, 20, 295–302.

    Article  Google Scholar 

  2. Terada, K., Nakako, T., Yang, X.-L., Iida, M., Aiba, N., Minamiya, Y., Nakai, M., Sakaki, T., Miura, N., & Sugiyama, T. (1998). Journal of Biological Chemistry, 273, 1815–1820.

    Article  CAS  Google Scholar 

  3. Fatemi, N., & Sarkar, B. (2002). Metals Toxicity, 110, 695–698.

    CAS  Google Scholar 

  4. Roelofsen, H., Wolters, H., Van Luyn, M. J., Miuta, N., Kuipers, F., & Vonk, R. J. (2000). Gastroenterology, 119, 782–793.

    Article  CAS  Google Scholar 

  5. Cater, M. A., Fontaine, S. L., Shield, K., Deal, Y., & Mercer, J. F. B. (2006). Gastroenterology, 130, 493–506.

    Article  CAS  Google Scholar 

  6. Svetel, M., Pekmezović, T., Petrović, I., Tomić, A., Kresojević, N., Ješić, R., Kažić, S., Raičević, R., Stefanović, D., Delibašić, N., Živanović, D., Dordević, M., & Kostić, V. S. (2009). European Journal of Neurology, 16, 852–857.

    Article  CAS  Google Scholar 

  7. DiDonato, M., Narindrasoradak, S., Forbes, J. R., Cox, D. W., & Sarker, B. (1997). Journal of Biological Chemistry, 272, 33279–33282.

    Article  CAS  Google Scholar 

  8. Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Lancet, 369, 397–408.

    Article  CAS  Google Scholar 

  9. Makino, S., Umemoto, T., Yamada, H., Yezdimer, E. M., & Tooyama, I. (2012). Applied Biochemistry and Biotechnology, 168, 504–518.

    Article  CAS  Google Scholar 

  10. Okayasu, T., Tochimaru, H., Hyuga, T., Takahashi, Y., Takekoshi, Y., Li, Y., Togashi, Y., Takeichi, N., Kasai, N., & Arashima, S. (1992). Pediatric Research, 31, 253–257.

    Article  CAS  Google Scholar 

  11. Fujiwara, N., Iso, H., Kitanaka, N., Kitanaka, J., Eguchi, H., Ookawara, T., Ozawa, K., Shimoda, S., Yoshihara, D., Takemura, M., & Suzuki, K. (2006). Biochemical and Biophysical Research Communications, 349, 1079–1086.

    Article  CAS  Google Scholar 

  12. Kawano, H., Takeuchi, Y., Yoshimoto, K., Matsumoto, K., & Sugimoto, T. (2001). Brain Research, 915, 25–31.

    Article  CAS  Google Scholar 

  13. Kim, J.-M., Ko, S.-B., Kwon, S.-J., Kim, H.-J., Han, M.-K., Kim, D. W., Cho, S. S., & Jeon, B. S. (2005). Neuroscience Letters, 382, 143–147.

    Article  CAS  Google Scholar 

  14. Nair, J., Strand, S., Frank, N., Knauft, J., Wesch, H., Galle, P. R., & Bartsch, H. (2005). Carcinogenesis, 26, 1307–1315.

    Article  CAS  Google Scholar 

  15. Kasper, C. B., Deutsch, H. F., & Beinert, H. (1963). Journal of Biological Chemistry, 238, 2338–2342.

    CAS  Google Scholar 

  16. Urbanski, N. K., & Beresewicz, A. (2000). Acta Biochimica Polonica, 47, 951–962.

    CAS  Google Scholar 

  17. Forrer, F., Valkema, R., Bernard, B., Schramm, N. U., Hoppin, J. W., Rolleman, E., Krenning, E. P., & deJong, M. (2006). European Journal of Nuclear Medicine and Molecular Imaging, 33, 1214–1217.

    Article  CAS  Google Scholar 

  18. Rolleman, E. J., Bernard, B. F., Breeman, W. A., Forrer, F., deBlois, E., Hoppin, J. W., Gotthardt, M., Boerman, O. C., Krenning, E. P., & deJong, M. (2008). Nuklearmedizin, 47, 110–115.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Research and Development of an Intellectual Infrastructure Project of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Science, Sports and Culture of Japan (I.T). The authors wish to sincerely thank Jack Hoppin, Jacob Hesterman, and Mary Germino at inviCRO, LLC (Boston, MA) for helping manage the SPECT studies and image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Yezdimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yezdimer, E.M., Umemoto, T., Yamada, H. et al. Visualizing Hepatic Copper Release in Long–Evans Cinnamon Rats Using Single-Photon Emission Computed Tomography. Appl Biochem Biotechnol 170, 1138–1150 (2013). https://doi.org/10.1007/s12010-013-0252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0252-9

Keywords

Navigation