Skip to main content
Log in

Engineering Plant Alternative Oxidase Function in Mammalian Cells: Substitution of the Motif-like Sequence ENV for QDT Diminishes Catalytic Activity of Arum concinnatum AOX1a Expressed in HeLa Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alternative oxidase (AOX) is a nonproton motive quinol–oxygen oxidoreductase which is a component of the mitochondrial respiratory chain in higher plants. In this study, we have characterized the catalytic activity and regulatory behaviors of Arum concinnatum AOX isoforms, namely AcoAOX1a and AcoAOX1b, and their artificial mutants in HeLa cells. We demonstrated that substitution of the motif-like sequence ENV on the C-terminal half of AcoAOX1a for QDT diminishes its activity and proposed that the innate inactivity of AcoAOX1b in HeLa cells is, at least in part, attributable to its QDT motif. Furthermore, we show that introduction of F130L in the hydrophilic N-terminal extension of AcoAOX1a resulted in greater activity in the presence of pyruvate. This result indicates that functional significance of the N-terminal extension is not particular to the conventional regulatory cysteine. On the basis of these findings, we discuss new insights into the structural integrity of AOX in HeLa cells and the applicability of mammalian cells for functional analysis of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Affourtit, C., Albury, M. S., Crichton, P. G., & Moore, A. L. (2002). FEBS Letters, 510, 121–126.

    Article  CAS  Google Scholar 

  2. Moore, A. L., & Albury, M. S. (2008). Biochemical Society Transactions, 36, 1022–1026.

    Article  CAS  Google Scholar 

  3. Moore, A. L., Shiba, T., Young, L., Harada, S., Kita, K., & Ito, K. (2013). Annual Review of Plant Biology. doi:10.1146/annurev-arplant-042811-105432.

    Google Scholar 

  4. Meeuse, B. J. D. (1975). Annual Review of Plant Physiology, 26, 117–126.

    Article  CAS  Google Scholar 

  5. Leach, G. R., Krab, K., Whitehouse, D. G., & Moore, A. L. (1996). The Biochemical Journal, 317, 313–319.

    CAS  Google Scholar 

  6. Watling, J. R., Robinson, S. A., & Seymour, R. S. (2006). Plant Physiology, 140, 1367–1373.

    Article  CAS  Google Scholar 

  7. Rasmusson, A. G., Fernie, A. R., & van Dongen, J. T. (2009). Physiologia Plantarum, 137, 371–382.

    Article  CAS  Google Scholar 

  8. Hanqing, F., Kun, S., Mingquan, L., Hongyu, L., Xin, L., Yan, L., & Yifeng, W. (2010). Molecular Plant Pathology, 11, 429–440.

    Article  Google Scholar 

  9. Maxwell, D. P., Wang, Y., & McIntosh, L. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 8271–8276.

    Article  CAS  Google Scholar 

  10. Vanlerberghe, G. C., Vanlerberghe, A. E., & McIntosh, L. (1997). Plant Physiology, 113, 657–661.

    CAS  Google Scholar 

  11. Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D. K., Tsuge, C., Tatsumi, R., Takahashi, G., Balogun, E. O., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Saimoto, H., Moore, A. L., Harada, S., & Kita, K. (2013). Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1218386110.

    Google Scholar 

  12. Berthold, D. A., Andersson, M. E., & Nordlund, P. (2000). Biochimica et Biophysica Acta, 1460, 241–254.

    Article  CAS  Google Scholar 

  13. Siedow, J. N., & Umbach, A. L. (2000). Biochimica et Biophysica Acta, 1459, 432–439.

    Article  CAS  Google Scholar 

  14. Umbach, A. L., Gonzàlez-Meler, M. A., Sweet, C. R., & Siedow, J. N. (2002). Biochimica et Biophysica Acta, 1554, 118–128.

    Article  CAS  Google Scholar 

  15. Holzapffel, R. C., Castelli, J., Finnegan, P. M., Millar, A. H., Whelan, J., & Day, D. A. (2003). Biochimica et Biophysica Acta, 1606, 153–162.

    Article  Google Scholar 

  16. Umbach, A. L., Ng, V. S., & Siedow, J. N. (2006). Biochimica et Biophysica Acta, 1757, 135–142.

    Article  CAS  Google Scholar 

  17. Crichton, P. G., Affourtit, C., Albury, M. S., Carré, J. E., & Moore, A. L. (2005). FEBS Letters, 579, 331–336.

    Article  CAS  Google Scholar 

  18. Scacco, S., Vergari, R., Scarpulla, R. C., Technikova-Dobrova, Z., Sardanelli, A., Lambo, R., Lorusso, V., & Papa, S. (2000). The Journal of Biological Chemistry, 275, 17578–17582.

    Article  CAS  Google Scholar 

  19. Tomitsuka, E., Kita, K., & Esumi, H. (2009). Proceedings of the Japan Academy Series B, 85, 258–265.

    Article  CAS  Google Scholar 

  20. Hakkaart, G. A. J., Dassa, E. P., Jacobs, H. T., & Rustin, P. (2006). EMBO Reports, 7, 341–345.

    Article  CAS  Google Scholar 

  21. Matsukawa, K., Kamata, T., & Ito, K. (2009). FEBS Letters, 583, 148–152.

    Article  CAS  Google Scholar 

  22. Kakizaki, Y., Seymour, R. S., & Ito, K. (2010). Biochimica et Biophysica Acta, 1797, 20–28.

    Article  CAS  Google Scholar 

  23. Dassa, E. P., Dufour, E., Gonçalves, S., Paupe, V., Hakkaart, G. A. J., Jacobs, H. T., & Rustin, P. (2009). EMBO Molecular Medicine, 1, 30–36.

    Article  CAS  Google Scholar 

  24. Perales-Clemente, E., Bayona-Bafaluy, M. P., Pérez-Martos, A., Barrientos, A., Fernández-Silva, P., & Enriquez, J. A. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 18735–18739.

    Article  CAS  Google Scholar 

  25. Fernandez-Ayala, D. J. M., Sanz, A., Vartiainen, S., Kemppainen, K. K., Babusiak, M., Mustalahti, E., Costa, R., Tuomela, T., Zeviani, M., Chung, J., O’Dell, K. M. C., Rustin, P., & Jacobs, H. T. (2009). Cell Metabolism, 9, 449–460.

    Article  CAS  Google Scholar 

  26. Humphrey, D. M., Parsons, R. B., Ludlow, Z. N., Riemensperger, T., Esposito, G., Verstreken, P., Jacobs, H. T., Birman, S., & Hirth, F. (2012). Human Molecular Genetics, 21, 2698–2712.

    Article  CAS  Google Scholar 

  27. Ito, K., Ogata, T., Kakizaki, Y., Elliott, C., Albury, M. S., & Moore, A. L. (2011). Plant Physiology, 157, 1721–1732.

    Article  CAS  Google Scholar 

  28. Kakizaki, Y., Seymour, R. S., & Ito, K. (2011). Biochimica et Biophysica Acta, 1807, 530–531.

    Article  CAS  Google Scholar 

  29. Abe, F., Saito, K., Miura, K., & Toriyama, K. (2002). FEBS Letters, 527, 181–185.

    Article  CAS  Google Scholar 

  30. Shi, Y., Mowery, R. A., Ashley, J., Hentz, M., Ramirez, A. J., Bilgicer, B., Slunt-Brown, H., Borchelt, D. R., & Shaw, B. F. (2012). Protein Science, 21, 1197–1209.

    Article  CAS  Google Scholar 

  31. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., & Deber, C. M. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 1760–1765.

    Article  CAS  Google Scholar 

  32. Wegener, A. D., & Jones, L. R. (1984). The Journal of Biological Chemistry, 259, 1834–1841.

    CAS  Google Scholar 

  33. Butcher, A. J., Prihandoko, R., Kong, K. C., McWilliams, P., Edwards, J. M., Bottrill, A., Mistry, S., & Tobin, A. B. (2011). The Journal of Biological Chemistry, 286, 11506–11518.

    Article  CAS  Google Scholar 

  34. Blom, N., Gammeltoft, S., & Brunak, S. (1999). Journal of Molecular Biology, 294, 1351–1362.

    Article  CAS  Google Scholar 

  35. Ingrell, C. R., Miller, M. L., Jensen, O. N., & Blom, N. (2007). Bioinformatics, 23, 895–897.

    Article  CAS  Google Scholar 

  36. Durek, P., Schmidt, R., Heazlewood, J. L., Jones, A., MacLean, D., Nagel, A., Kersten, B., & Schulze, W. X. (2010). Nucleic Acids Research, 38, D828–D834.

    Article  CAS  Google Scholar 

  37. Opekarová, M., & Tanner, W. (2003). Biochimica et Biophysica Acta, 1610, 11–22.

    Article  Google Scholar 

  38. Lange, C., Nett, J. H., Trumpower, B. L., & Hunte, C. (2001). The EMBO Journal, 20, 6591–6600.

    Article  CAS  Google Scholar 

  39. Robinson, N. C., Zborowski, J., & Talbert, L. H. (1990). Biochemistry, 29, 8962–8969.

    Article  CAS  Google Scholar 

  40. Carré, J. E., Affourtit, C., & Moore, A. L. (2011). FEBS Letters, 585, 397–401.

    Article  Google Scholar 

  41. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (Grant-in-Aid for JSPS Fellows) grant number 22-224. YK is a JSPS Research Fellow. We thank the members of our laboratory for technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuke Kakizaki or Kikukatsu Ito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. S1

Immunological detection of AOX proteins in the mitochondrial fraction of HeLa cells. In addition to AOX, beta-actin (ACTB) and a subunit of the respiratory complex I (NDUFB5) were detected as cytosolic and mitochondrial marker proteins, respectively. Cyt and Mit mean cytosolic and mitochondrial fractions, respectively. Approximate molecular weights of several standard proteins are indicated on the right of the images. Abbreviations: 1a, AcoAOX1a, 1b, AcoAOX1b. (PPT 2929 kb)

ESM Fig. S2

Quantitative comparison of AOX proteins in HeLa cells. Expression levels of AOX in 12 μg whole cell lysate proteins were determined by densitometry after immunological detection. The results are shown as mean ± SD (n = 3). Quantity can be compared within each pair only. The p values obtained by t-test are also shown for statistical significance of the results. Abbreviations: 1a, AcoAOX1a, 1b, AcoAOX1b. (PPT 100 kb)

ESM Fig. S3

Immunological detection of AOX proteins in HeLa cells expressing 1a, 1a-E83K, 1a-E110D or 1a-F130L. ACTB and NDUFB5 were also detected as cytosolic and mitochondrial marker proteins, respectively. The figure is presented as in Supplementary Fig. 1. Abbreviation: 1a, AcoAOX1a. (PPT 1016 kb)

ESM Table S1

PCR templates and primers used in this study to construct AcoAOX1a mutants. (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakizaki, Y., Ito, K. Engineering Plant Alternative Oxidase Function in Mammalian Cells: Substitution of the Motif-like Sequence ENV for QDT Diminishes Catalytic Activity of Arum concinnatum AOX1a Expressed in HeLa Cells. Appl Biochem Biotechnol 170, 1229–1240 (2013). https://doi.org/10.1007/s12010-013-0235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0235-x

Keywords

Navigation