Skip to main content
Log in

Heterotrophic Nitrifying and Oxygen Tolerant Denitrifying Bacteria from Greenwater System of Coastal Aquaculture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, herbivorous fish Mugil cephalus has been cultured to secrete protein rich green slime, which helps nitrifying and oxygen tolerant denitrifying bacteria to grow and colonize. Four strains representing Alcaligenaceae family have been isolated from greenwater system and characterized using biochemical test, fatty acid methyl ester (GC-FAME) analysis, 16S rRNA and functional gene approaches. They were tested for an ability to nitrify ammonia and nitrite aerobically. Two strains showed notable nitrification activity, when grown in a mineral salts medium containing ammonium sulfate and potassium nitrite. Functional gene analysis confirmed the presence of nitrous oxide reductase (nosZ) gene showing that they have an oxygen-tolerant denitrification system. It has been proposed that Alcaligenes faecalis strains heterotrophically nitrify ammonia into nitrite via formation of hydroxyl amine, which is oxidized to nitrous oxide using oxygen or nitrite as electron acceptor. These results provide a possible advantage of having nitrification and denitrification capabilities in the same organism, which plays an important role in biological wastewater system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walsh, P. J., & Wright, P. A. (1995). Nitrogen Metabolism and Excretion (p. 352). Florida, USA: CRC Press.

    Google Scholar 

  2. Focht, D. D., & Verstraete, W. (1977). Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology, 1, 135–214.

    Article  CAS  Google Scholar 

  3. Winogradsky, S. (1890). Recherches sur les organismes de la nitrification. Annales de l'Institut Pasteur. Microbiology, 4, 213–231.

    Google Scholar 

  4. Daum, H., Zimmer, W., Papen, H., Kloos, K., Nawrath, K., & Bothe, H. (1998). Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida. Current Microbiology, 37, 281–288.

    Article  CAS  Google Scholar 

  5. Papen, H., Von-Berg, R., Hinkel, I., Thoene, B., & Rennenberg, H. (1989). Heterotrophic nitrification by Alcaligenes faecalis: NO2, NO3, N2O, and NO. Production in exponentially growing cultures. Applied and Environmental Microbiology, 55(8), 2068–2072.

    CAS  Google Scholar 

  6. Witzel, K. P., & Overbeck, H. J. (1979). Heterotrophic nitrification by Arthrobacter sp. (strain 9006) as influenced by different cultural conditions, growth state and acetate metabolism. Archives of Microbiology, 122, 137–143.

    Article  CAS  Google Scholar 

  7. Robertson, L. A., & Kuenen, J. G. (1988). Heterotrophic nitrification in Thiosphaera pantotropha: oxygen uptake and enzyme studies. Journal of General Microbiology, 134, 857–863.

    CAS  Google Scholar 

  8. VanNiel, E. W., Braker, K. J., Robertson, L. A., & Kuenen, J. G. (1992). Heterotrophic nitrification and aerobic denitrification in Alacaligenes faecalis strain TUD. Antonie Van Leeuwenhoek, 62, 231–237.

    Article  CAS  Google Scholar 

  9. Su, J. J., Yeh, K. S., & Tseng, P. W. (2006). A strain of Pseudomonas sp. Isolated from Piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan. Current Microbiology, 53, 77–81.

    Article  CAS  Google Scholar 

  10. Castigenettii, D., & Hollocher, T. C. (1984). Heterotrophic nitrification among denitrifiers. Applied and Environmental Microbiology, 47, 4620–4623.

    Google Scholar 

  11. Robertson, L. A., Cornelisse, R., De Vos, P., Hadioetomo, R., & Kuenen, J. G. (1989). Aerobic denitrification in various heterotrophic nitrifiers. Antonie Van Leeuwenhoek, 56(4), 289–299.

    Article  CAS  Google Scholar 

  12. Emery, T. (1974). Biosynthesis and mechanism of action of hydroxamate-type siderochromes. In J. B. Neilands (Ed.), Microbial metabolism, a comprehensive treatise (pp. 107–123). New York: Academic Press, Inc.

    Google Scholar 

  13. Baliao, D. D., De Los Santo, M. A., & Franco, N. M. (1999). Milkfish pond culture. Aquaculture Extension manual no. 25. Ilo-ilo: SEAFDEC.

  14. Baliao, D. D. (2000). Environment-friendly schemes in intensive shrimp farming. State of the art Series. Ilo-ilo: SEAFDEC.

  15. Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. Canada Fisheries Research Board Bulletin, 167, 310.

    Google Scholar 

  16. APHA, AWWA, WEF. (1989). Standard methods for the examination of water and wastewater (17th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  17. Sasser, M. (1990). Technical note 101: Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). North Newark, Del: MIDI, Inc.

    Google Scholar 

  18. Krishnani, K. K. (2010). Detection and diversity of nitrifying and denitrifying bacteria in coastal aquaculture. Aquaculture, 302, 57–70.

    Article  CAS  Google Scholar 

  19. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  20. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  21. Daniels, L., Hanson, R. S., & Phillips, J. A. (1994). Chemical analysis. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR(eds). Methods for general and molecular bacteriology. Washington DC: American Society for Microbiology, pp. 357–539, 541–2.

  22. Coenye, T., Vancanneyt, M., Cnockaert, M. C., Falsen, E., Swings, J., & Vandamme, P. (2003). Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Ruger and Tan 1983 as Achromobacter denitrificans comb. Nov. International Journal of Systematic and Evolutionary Microbiology, 53, 1825–1831.

    Article  CAS  Google Scholar 

  23. Rehfuss, M., & Urban, J. (2005). Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Systematic and Applied Microbiology, 28(5), 421–429.

    Article  CAS  Google Scholar 

  24. Kersters, K., & De Ley, J. (1984). Genus Alcaligenes Castellani and Chalmers (1919). In N. R. Krieg & J. G. Holt (Eds.), Bergeys manual of systematic bacteriology (Vol. 1, pp. 361–373). Baltimore: Williams and Wilkins.

    Google Scholar 

  25. Nishio, T., Yoshikura, T., Chiba, K., & Inouye, Z. (1994). Effects of organic acids on heterotrophic nitrification by Alcaligenes faecalis OKK17. Bioscience, Biotechnology, and Biochemistry, 58(9), 1574–1578.

    Article  CAS  Google Scholar 

  26. Rotthauwe, J. H., Boer, W., & Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker, molecular ¢ne scale analysis of natural ammonia oxidizing populations. Applied and Environmental Microbiology, 63, 4704–4712.

    CAS  Google Scholar 

  27. Holmes, A. J., Costello, A., Lidstrom, M. E., & Murrell, J. C. (1995). Evidence that particulate methane monooxynase and ammonia monooxynase may be evolutionary related. FEMS Microbiology Letters, 132, 203–208.

    Article  CAS  Google Scholar 

  28. Krishnani, K. K., & Kathiravan, V. (2010). A quantitative method for detecting ammonia-oxidizing bacteria in coastal aquaculture systems. Aquaculture Research, 41, 1648–1657.

    Article  CAS  Google Scholar 

  29. Ono, Y., Makino, N., Hoshino, Y., Shoji, K., & Yamanaka, T. (1996). An iron dioxygenase from Alcaligenes faecalis catalyzing the oxidation of pyruvic oxime to nitrite. FEMS Microbiology Letters, 139(2–3), 103–108.

    CAS  Google Scholar 

  30. Castignetti, D., & Gunner, H. B. (1981). Nitrite and nitrate synthesis from pyruvic oxime by an Alcaligenes sp. Current Microbiology, 5, 379–384.

    Article  CAS  Google Scholar 

  31. Taylor, S. M., He, Y., Zhao, B., & Huang, J. (2009). Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. Journal of Environmental Sciences, 21(10), 1336–1341.

    Article  CAS  Google Scholar 

  32. Wehrfritz, J. M., Reilly, A., Spiro, S., & Richardson, D. J. (1993). Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Letters, 335(2), 246–250.

    Article  CAS  Google Scholar 

  33. Wehrfritz, J., Carter, J. P., Spiro, S., & Richardson, D. J. (1996). Hydroxylamine oxidation in heterotrophic nitrate-reducing soil bacteria and purification of a hydroxylamine-cytochrome c oxidoreductase from a Pseudomonas species. Archives of Microbiology, 166(6), 421–424.

    Article  CAS  Google Scholar 

  34. Wunderlin, P., Mohn, J., & Joss, A. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037.

    Article  CAS  Google Scholar 

  35. Kampschreur, M. J., van der Star, W. R., Wielders, H. A., Mulder, J. W., Jetten, M. S., & van Loosdrecht, M. C. (2008). Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 42(3), 812–826.

    Article  CAS  Google Scholar 

  36. Campos, J. L., Arrojo, B., Vazquez-Padín, J. R., Mosquera-Corral, A., & Mendez, R. (2009). N(2)O production by nitrifying biomass under anoxic and aerobic conditions. Applied Biochemistry and Biotechnology, 152(2), 189–198.

    Article  CAS  Google Scholar 

  37. Xie, W. M., Ni, B. J., Li, W. W., Sheng, G. P., Yu, H. Q., & Song, J. (2012). Formation and quantification of soluble microbial products and N2O production by ammonia-oxidizing bacteria (AOB)-enriched activated sludge. Chemical Engineering Science, 71, 67–74.

    Article  CAS  Google Scholar 

  38. Gupta, A. B. (1997). Thiosphaera pantotropha: A sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme and Microbial Technology, 21, 589–595.

    Article  CAS  Google Scholar 

  39. Robertson, L. A., Van Niel, E. W. J., Torremans, R. A. M., & Kuenen, J. G. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54, 2812–2818.

    CAS  Google Scholar 

  40. Chen, Z., Liu, J., Wu, M., Xie, X., Wu, J., & Wei, W. (2011). Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microbial Ecology, 63, 446–459.

    Article  Google Scholar 

  41. Su, J. J., Liu, B. Y., & Liu, C. Y. (2001). Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. Journal of Applied Microbiology, 90, 457–462.

    Article  CAS  Google Scholar 

  42. Kim, M., Jeong, S., Yoon, S. J., Cho, S. J., Kim, Y. H., Kim, M. J., et al. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. Journal of Bioscience and Bioengineering, 106, 498–502.

    Article  CAS  Google Scholar 

  43. Zhao, B., He, Y. L., Hughes, J., & Zhang, X. F. (2010). Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresource Technology, 101, 5194–5200.

    Article  CAS  Google Scholar 

  44. Ju, D. H., Choi, M. K., Ahn, J. H., Kim, M. H., Cho, J. C., Kim, T., et al. (2007). Molecular and ecological analyses of microbial community structures in biofilms of a full-scale Aerated Up-Flow Biobead process. Journal of Microbiology and Biotechnology, 17(2), 253–261.

    CAS  Google Scholar 

  45. Castignetti, D., & Hollocher, T. C. (1982). Nitrogen redox metabolism of a heterotrophic nitrifying-denitrifying Alcaligenes sp. from soil. Applied and Environmental Microbiology, 44, 923–928.

    CAS  Google Scholar 

  46. Baker, G. C., Smith, J. J., & Cowan, D. A. (2003). Reviews and reanalysis of domain-specific 16S primers. Journal of Microbiological Methods, 55, 541–555.

    Article  CAS  Google Scholar 

  47. Hirayama, H., Takai, K., Inagaki, F., Yamato, Y., Suzuki, M., Nealson, K. H., et al. (2005). Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles, 9, 169–184.

    Article  CAS  Google Scholar 

  48. Flanagan, D. A., Gregory, L. G., Carter, J. P., Karakas-Sen, A., Richardson, D. J., & Spiro, S. (1999). Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiology Letters, 177, 263–270.

    Article  CAS  Google Scholar 

  49. Philippot, L., Piutti, S., Martin-Laurent, F., Hallet, S., & Germon, J. C. (2002). Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Applied and Environmental Microbiology, 68, 6121–6128.

    Article  CAS  Google Scholar 

  50. Braker, G., Fesefeldt, A., & Witzel, K. P. (1998). Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 64, 3769–3775.

    CAS  Google Scholar 

  51. Braker, G., & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 69, 3476–3483.

    Article  CAS  Google Scholar 

  52. Kloos, K., Mergel, A., Rosch, C., & Bothe, H. (2001). Denitrification within the genus Azospirillum and other associative bacteria. Australian Journal of Plant Physiology, 28, 991–998.

    Google Scholar 

  53. Scala, D. J., & Kerkhof, L. J. (1998). Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiology Letters, 162, 61–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A.G. Ponniah, Director, Central Institute of Brackishwater Aquaculture, Chennai for providing facilities to carry out this work. Financial assistance from Department of Biotechnology, Ministry of Science and Technology, Govt. of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Kumar Krishnani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velusamy, K., Krishnani, K.K. Heterotrophic Nitrifying and Oxygen Tolerant Denitrifying Bacteria from Greenwater System of Coastal Aquaculture. Appl Biochem Biotechnol 169, 1978–1992 (2013). https://doi.org/10.1007/s12010-013-0109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0109-2

Keywords

Navigation