Skip to main content

Advertisement

Log in

Optimized Fed-Batch Fermentation of Scheffersomyces stipitis for Efficient Production of Ethanol from Hexoses and Pentoses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose–xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h−1. With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agbogbo, F. K., & Coward-Kelly, G. (2008). Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters, 30, 1515–1524.

    Article  CAS  Google Scholar 

  2. Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M., Wenger, K., & Jeffries, T. W. (2007). The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Applied Biochemistry and Biotechnology, 137, 653–662.

    Article  Google Scholar 

  3. Andersson, L., Stranberg, L., Haggstrom, L., & Enfors, S. O. (1994). Modeling of high cell density fed batch cultivation. FEMS Microbiology Reviews, 14, 39–44.

    Article  CAS  Google Scholar 

  4. Bäcklund, E., Reeks, D., Markland, K., Weir, N., Bowering, L., & Larsson, G. (2008). Fed-batch design for periplasmic product retention in Escherichia coli. Journal of Biotechnology, 135, 358–365.

    Article  Google Scholar 

  5. Canilha, L., Carvalho, W., Felipe, M. G. A., Batista, J. A. S., & Giulietti, M. (2010). Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Applied Biochemistry and Biotechnology, 161, 84–92.

    Article  CAS  Google Scholar 

  6. Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manikyam, A., & Rao, L. V. (2009). Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae. Biores Technol, 100, 2404–2410.

    Article  CAS  Google Scholar 

  7. Chandel, A. K., Singh, O. V., Rao, L. V., Chandrasekhar, G., & Narasu, M. L. (2011). Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Biores Technol, 102, 1709–1714.

    Article  CAS  Google Scholar 

  8. Cho, D. H., Shin, S.-J., Bae, Y., Park, C., & Kim, Y. H. (2011). Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Biores Technol, 102, 4439–4443.

    Article  CAS  Google Scholar 

  9. Cho, Y. H., Song, J. Y., Kim, K. M., Kim, M. K., Lee, I. Y., Kim, S. B., Kim, H. S., Han, N. S., Lee, B. H., & Kim, B. S. (2010). Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. New Biotechnology, 27, 341–346.

    Article  CAS  Google Scholar 

  10. Chu, B. C., & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25, 425–441.

    Article  CAS  Google Scholar 

  11. Dellweg, H., Rizzi, M., Methner, H., & Debus, D. (1984). Xylose fermentation by yeasts: Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnology Letters, 6, 395–400.

    Article  CAS  Google Scholar 

  12. Ferreira, A. D., Mussatto, S. I., Cadete, R. M., Rosa, C. A., & Silva, S. S. (2011). Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast, 28, 547–554.

    Article  CAS  Google Scholar 

  13. Gırio, F., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.

    Article  Google Scholar 

  14. Gutiérrez-Rivera, B., Waliszewski-Kubiak, K., Carvajal-Zarrabal, O., & Aguilar-Uscanga, M. G. (2012). Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. Chem Technol and Biotechnol, 87, 263–270.

    Article  Google Scholar 

  15. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74, 937–953.

    Article  Google Scholar 

  16. Hong, J. (1986). Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition kinetics. Biotechnology and Bioengineering, 28, 1421–1431.

    Article  CAS  Google Scholar 

  17. Huang, H., Ridgway, D., Gu, T., & Moo-Young, M. (2004). Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioproc Biosyst Eng, 27, 63–69.

    Article  CAS  Google Scholar 

  18. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17, 320–326.

    Article  CAS  Google Scholar 

  19. Jeffries, T. W., & Van Vleet, J. R. (2009). Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Research, 9, 793–807.

    Article  CAS  Google Scholar 

  20. Krahulec, S., Kratzer, R., Longus, K., & Nidetzky, B. (2012). Comparison of Scheffersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. Microbiologyopen, 1, 64–70.

    Article  CAS  Google Scholar 

  21. Kwon, E. Y., Kim, K. M., Kim, M. K., Lee, I. Y., & Kim, B. S. (2011). Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis. Bioproc Biosyst Eng, 34, 789–793.

    Article  CAS  Google Scholar 

  22. Ladisch, M. R., & Dyck, K. (1979). Dehydration of ethanol: New approach gives positive energy balance. Science, 205, 898–900.

    Article  CAS  Google Scholar 

  23. Lee, J., Rodrigues, R. C., & Jeffries, T. W. (2009). Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface. Biores Technol, 100, 6307–6311.

    Article  CAS  Google Scholar 

  24. Lin, T. H., Huang, C. F., Guo, G. L., Hwang, W. S., & Huang, S. L. (2012). Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Biores Technol, 116, 314–319.

    Article  CAS  Google Scholar 

  25. Nor, Z. M., Tamer, M. I., Scharer, J. M., Moo-Young, M., & Jervis, E. J. (2001). Automated fed-batch culture of Kluyveromyces fragilis based on a novel method for on-line estimation of cell specific growth rate. Biochemical Engineering Journal, 9, 221–231.

    Article  CAS  Google Scholar 

  26. Pacheco Chavez, R. A., Tavares, L. C., Teixeira, A., Carvalho, J., Converti, A., & Sato, S. (2004). Influence of the nitrogen source on the productions of a-amylase and glucoamylase by a new Trichoderma sp. from soluble starch. Chem Biochem Eng, 18, 403–407.

    Google Scholar 

  27. Prior, B. A., Kilian, S. G., & du Preez, J. C. (1989). Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis. Proc Biochem, 2, 21–32.

    Google Scholar 

  28. Riesenberg, D. (1991). High-cell density cultivation of Escherichia coli. Current Opinion in Biotechnology, 2, 380–384.

    Article  CAS  Google Scholar 

  29. Scordia, D., Cosentino, S. L., Lee, J.-W., & Jeffries, T. W. (2012). Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass and Bioen, 39, 296–305.

    Article  CAS  Google Scholar 

  30. Silva, J. P., Mussatto, S. I., & Roberto, I. C. (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology, 162, 1306–1315.

    Article  CAS  Google Scholar 

  31. Slininger, P. J., Dien, B. S., Gorsich, S. W., & Liu, Z. L. (2006). Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Applied Microbiology and Biotechnology, 72, 1285–1296.

    Article  CAS  Google Scholar 

  32. Slininger, P. J., Gorsich, S. W., & Liu, Z. L. (2009). Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Biotechnology and Bioengineering, 102, 778–790.

    Article  CAS  Google Scholar 

  33. Unrean, P., & Nguyen, N. H. (2012). Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments. Biotech Prog, 28, 1119–1125.

    Article  CAS  Google Scholar 

  34. Unrean, P., & Nguyen, N. H. (2012). Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: Effect of oxygen availability on ethanol synthesis and flux distributions. Applied Microbiology and Biotechnology, 94, 1387–1398.

    Article  CAS  Google Scholar 

  35. Arslan, Y., & Eken-Saraçoğlu, N. (2010). Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Biores Technol, 101, 8664–8670.

    Google Scholar 

  36. Yong, Q., Li, X., Yuan, Y., Lai, C., Zhang, N., Chu, Q., Xu, Y., & Yu, S. (2012). An improved process of ethanol production from hemicellulose: Bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover with a domesticated Pichia stipitis. Applied Biochemistry and Biotechnology, 167, 2330–2340.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by Thailand Research Fund (TRF) Grant for New Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornkamol Unrean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unrean, P., Nguyen, N.H. Optimized Fed-Batch Fermentation of Scheffersomyces stipitis for Efficient Production of Ethanol from Hexoses and Pentoses. Appl Biochem Biotechnol 169, 1895–1909 (2013). https://doi.org/10.1007/s12010-013-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0100-y

Keywords

Navigation