Skip to main content
Log in

Heterologous Expression and Characterization of a Glycoside Hydrolase Family 45 endo-β-1,4-Glucanase from a Symbiotic Protist of the Lower Termite, Reticulitermes speratus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The termite symbiotic system is one of the efficient lignocellulose degradation systems. We tried to express and characterize a novel cellulolytic enzyme from this system. Here, we report the isolation of an endo-β-1,4-glucanase gene homolog of glycoside hydrolase family 45 from a symbiotic protistan community of Reticulitermes speratus. Heterologous expression of this gene was performed using the expression system of Aspergillus oryzae. Analysis of enzymatic properties revealed 786 μmol/min/mg protein in specific activity, a V max of 833.0 units/mg protein, and a K m value of 2.58 mg/ml with carboxymethyl cellulose as the substrate. Thin-layer chromatography analysis showed that RsSymEG2 produces cellobiose from cellodextrins larger than cellohexaose. This enzyme showed high specific activity like other endo-β-1,4-glucanases from the symbiotic system of termites. It means that the termite symbiotic system is a good resource for highly active endo-β-1,4-glucanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohkuma, M. (2008). Applied Microbiology and Biotechnology, 61, 1–9.

    Google Scholar 

  2. Ohkuma, M. (2008). Trends in Microbiology, 16, 345–352.

    Article  CAS  Google Scholar 

  3. Inoue, T., Moriya, S., Ohkuma, M., et al. (2005). Gene, 349, 67–75.

    Article  CAS  Google Scholar 

  4. Todaka, N., Lopez, C., Inoue, T., et al. (2010). Applied Biochemistry and Biotechnology, 160, 1168–1178.

    Article  CAS  Google Scholar 

  5. Sasaguri, S., Maruyama, J., Moriya, S., et al. (2008). The Journal of General and Applied Microbiology, 54, 343–351.

    Article  CAS  Google Scholar 

  6. Ohtoko, K., Ohkuma, M., Moriya, S., et al. (2000). Extremophiles, 4, 343–349.

    Article  CAS  Google Scholar 

  7. Nemoto, T., Watanabe, T., Mizogami, Y., et al. (2009). Applied Microbiology and Biotechnology, 82, 1105–1114.

    Article  CAS  Google Scholar 

  8. Slaytor, M., Sugimoto, A., Azuma, J., et al. (1997). Journal of Insect Physiology, 43, 235–242.

    Article  Google Scholar 

  9. Moriya, T., Murashima, K., Nakane, A., et al. (2003). Journal of Bacteriology, 185, 1749–1756.

    Article  CAS  Google Scholar 

  10. Baba, Y., Shimonaka, A., Koga, J., et al. (2005). Journal of Bacteriology, 187, 3045–3051.

    Article  CAS  Google Scholar 

  11. Kikuchi, T., Jones, J. T., Aikawa, T., et al. (2004). FEBS Letters, 572, 201–205.

    Article  CAS  Google Scholar 

  12. Koga, J., Baba, Y., Shimonaka, A., et al. (2008). Applied and Environmental Microbiology, 74, 4210–4217.

    Article  CAS  Google Scholar 

  13. Davies, G. J., Dodson, G. G., Hubbard, R. E., et al. (1993). Nature, 365, 362–364.

    Article  CAS  Google Scholar 

  14. Davies, G. J., Tolley, S. P., Henrissat, B., et al. (1995). Biochemistry, 34, 16210–16220.

    Article  CAS  Google Scholar 

  15. Hirvonen, M., & Papageorgiou, A. C. (2003). Journal of Molecular Biology, 329, 403–410.

    Article  CAS  Google Scholar 

  16. Gilkes, N. R., Henrissat, B., Kilburn, D. G., et al. (1991). Microbiological Reviews, 55, 303–315.

    CAS  Google Scholar 

  17. Henrissat, B., & Bairoch, A. (1993). The Biochemical Journal, 293(Pt 3), 781–788.

    CAS  Google Scholar 

  18. Baba, Y., Shimonaka, A., Koga, J., et al. (2005). Bioscience, biotechnology and biochemistry, 69, 1198–1201.

    Article  CAS  Google Scholar 

  19. Takashima, S., Iikura, H., Nakamura, A., et al. (1999). Journal of Biotechnology, 67, 85–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Program for the Promotion of Basic Research Activity for Innovative Biosciences (PROBRAIN). Partial support was also provided by the Biomass Engineering Research Program (RIKEN). CML was supported by the UNESCO Postgraduate Inter-university Course in Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeharu Moriya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otagiri, M., Lopez, C.M., Kitamoto, K. et al. Heterologous Expression and Characterization of a Glycoside Hydrolase Family 45 endo-β-1,4-Glucanase from a Symbiotic Protist of the Lower Termite, Reticulitermes speratus . Appl Biochem Biotechnol 169, 1910–1918 (2013). https://doi.org/10.1007/s12010-012-9992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9992-1

Keywords

Navigation