Skip to main content
Log in

Evaluation for Rock Phosphate Solubilization in Fermentation and Soil–Plant System Using A Stress-Tolerant Phosphate-Solubilizing Aspergillus niger WHAK1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A strain WHAK1, identified as Aspergillus niger, was isolated from Yichang phosphate mines in Hubei province of China. The fungus developed a phosphate solubilization zone on modified National Botanical Research Institute’s phosphate growth (NBRIP) agar medium, supplemented with tricalcium phosphate. The fungus was applied in a repeated-batch fermentation process in order to test its effect on solubilization of rock phosphate (RP). The results showed that A. niger WHAK1 could effectively solubilize RP in NBRIP liquid medium and released soluble phosphate in the broth, which can be illustrated by the observation of scanning electron microscope, energy-dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. Acidification of the broth seemed to be the major mechanism for RP solubilization by the fungus. Indeed, multiple organic acids (mainly gluconic acid) were detected in the broth by high-performance liquid chromatography analysis. These organic acids caused a significant drop of pH and an obvious rise of titratable acidity in the broth. The fungus also exhibited high levels of tolerance against temperature, pH, salinity, and desiccation stresses, although a significant decline in the fungal growth and release of soluble phosphate was marked under increasing intensity of stress parameters. Further, the fungus was introduced into the soil supplemented with RP to analyze its effect on plant growth and phosphate uptake of wheat plants. The result revealed that inoculation of A. niger WHAK1 significantly increased the growth and phosphate uptake of wheat plants in the RP-amended soil compared to the control soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodríguez, H., & Fraga, R. (1999). Biotechnology Advances, 17, 319–359.

    Article  Google Scholar 

  2. Rajan, S. S. S., Watkinson, J. H., & Sinclair, A. G. (1996). Advances in Agronomy, 57, 77–159.

    Article  CAS  Google Scholar 

  3. Sahu, S. N., & Jana, B. B. (2000). Ecological Engineering, 15, 27–39.

    Article  Google Scholar 

  4. Whitelaw, M. A. (2000). Advances in Agronomy, 69, 99–151.

    Article  CAS  Google Scholar 

  5. Biswas, D. R., & Narayanasamy, G. (2006). Bioresource Technology, 97, 2243–2251.

    Article  CAS  Google Scholar 

  6. Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  7. Pérez, E., Sulbaran, M., Ball, M. M., & Yarzabal, L. A. (2007). Soil Biology and Biochemistry, 39, 2905–2914.

    Article  Google Scholar 

  8. Papagianni, M. (2007). Biotechnology Advances, 25, 244–263.

    Article  CAS  Google Scholar 

  9. Anjum, F., Bhatti, H. N., Asgher, M., & Shahid, M. (2010). Applied Clay Science, 47, 356–361.

    Article  CAS  Google Scholar 

  10. Mukherjee, A., Das, D., Mondal, S. K., Biswas, R., Das, T. K., Boujedaini, N., & Khuda-Bukhsh, A. R. (2010). Ecotoxicology and Environmental Safety, 73, 172–182.

    Article  CAS  Google Scholar 

  11. Vassilev, N., Baca, M. T., Vassileva, M., Franco, I., & Azeon, R. (1995). Applied Microbiology and Biotechnology, 44, 546–549.

    Article  CAS  Google Scholar 

  12. Vassilev, N., Franco, I., Vassileva, M., & Azcon, R. (1996). Bioresource Technology, 55, 237–241.

    Article  CAS  Google Scholar 

  13. Shrivastava, M., Kale, S. P., & D’Souza, S. F. (2011). European Journal of Soil Biology, 47, 205–212.

    Article  Google Scholar 

  14. Medina, A., Jakobsen, I., Vassilev, N., Azcón, R., & Larsen, J. (2007). Soil Biology and Biochemistry, 39, 485–492.

    Article  CAS  Google Scholar 

  15. Nautiyal, C. S. (1999). FEMS Microbiology Letters, 170, 265–270.

    Article  CAS  Google Scholar 

  16. White, T. J., Bruns, T., Lee, S., & Talor, J. (1990). In PCR protocols: a guide to methods and applications. In Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (eds.). San Diego: Academic pp. 315–322.

  17. Jiang, L. H., Zhao, S. L., & Zhu, J. H. (2001). Chemical Engineering, 85, 50–51 (in Chinese).

    Google Scholar 

  18. John, M. K. (1970). Soil Science, 68, 171–177.

    Google Scholar 

  19. Colwell, J. D. (1965). Chemical Industry, 22, 893–895.

    Google Scholar 

  20. Vassilev, N., Vassileva, M., Bravo, V., Fernández-Serrano, M., & Nikolaeva, I. (2007). Industrial Crops and Products, 26, 332–336.

    Article  CAS  Google Scholar 

  21. Bojinova, D., Velkova, R., & Ivanova, R. (2008). Bioresource Technology, 99, 7348–7353.

    Article  CAS  Google Scholar 

  22. Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (1998). Journal of Biotechnology, 63, 67–72.

    Article  CAS  Google Scholar 

  23. Chuang, C. C., Kuo, Y. L., Chao, C. C., & Chao, W. L. (2007). Biology and Fertility of Soils, 43, 575–584.

    Article  CAS  Google Scholar 

  24. Ogbo, F. C. (2010). Bioresource Technology, 101, 4120–4124.

    Article  CAS  Google Scholar 

  25. Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G., & Roldan, A. (2004). Applied Soil Ecology, 25, 169–180.

    Article  Google Scholar 

  26. Vassilev, N., Medina, A., Azcon, R., & Vassilev, M. (2006). Plant Soil, 287, 77–84.

    Article  CAS  Google Scholar 

  27. Kpomblekou-A, K., & Tabatabai, M. A. (1994). Soil Science, 158, 442–453.

    Article  CAS  Google Scholar 

  28. Pradhan, N., & Sukla, L. B. (2005). African Journal of Biotechnology, 5, 850–854.

    Google Scholar 

  29. Vyas, P., Rahi, P., Chauhan, A., & Gulati, A. (2007). Mycological Research, 111, 931–938.

    Article  CAS  Google Scholar 

  30. Vyas, P., Rahi, P., & Gulati, A. (2009). Microbial Ecology, 58, 425–434.

    Article  CAS  Google Scholar 

  31. Zayed, G., & Abdel-Motaal, H. (2005). Bioresource Technology, 96, 929–935.

    Article  CAS  Google Scholar 

  32. Jain, R., Saxena, J., & Sharma, V. (2010). Applied Soil Ecology, 46, 90–94.

    Article  Google Scholar 

  33. Singh, H., & Reddy, M. S. (2011). European Journal of Soil Biology, 47, 30–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was kindly supported by National Natural Science Foundation of China (no. 51004078), Program for New Century Excellent Talents in University (NCET-11-0965), Program for Changjiang Scholars and Innovative Research Team in University (no. IRT0974) and National Basic Research Program of China (no. 2011CB411901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruan Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Zhang, H., Fang, Y. et al. Evaluation for Rock Phosphate Solubilization in Fermentation and Soil–Plant System Using A Stress-Tolerant Phosphate-Solubilizing Aspergillus niger WHAK1. Appl Biochem Biotechnol 169, 123–133 (2013). https://doi.org/10.1007/s12010-012-9967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9967-2

Keywords

Navigation