Skip to main content
Log in

Regulation of Enzymatic Activity by Deamidation and Their Subsequent Repair by Protein l-isoaspartyl Methyl Transferase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study explored both spontaneous and stress-induced deamidation in acid trehalase and endo-xylanase. An alteration in optimum pH by 1.5 units and optimum temperature by 20 °C accelerated the process of deamidation with a rise in isoaspartate formation and ammonia loss. Spontaneous deamidation during an enzyme-substrate reaction at physiological conditions resulted in accretion of isoaspartyl residues within the enzymes which gradually impaired their catalytic efficacy. Deamidation appeared to be more pronounced in endo-xylanase owing to its secondary structure conformation and high asparagine content. The active sites, Ala 549 in acid trehalase and His184 and Trp188 in endo-xylanase contributed to the loss of enzyme activity as they were flanking the deamidation-susceptible Asn residues. Protein l-isoaspartyl methyl transferase seemed to have a repairing capability, which enabled the heat-damaged enzymes to regain their partial activity as evident from there rise in K cat/K m. Endo-xylanase could regain 38.1 % of its biological activity while a lesser 17.5 % reactivation was obtained in acid trehalase. A unique protein l-isoaspartyl methyl transferase recognition site, Asn 151 was also identified in acid trehalase. A mass increment of the tryptic peptides of repaired enzyme due to methylation catalyzed by protein l-isoaspartyl methyl transferase substantiated the repair hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EX:

Endo-xylanase

AT:

Acid trehalase

ADH:

Alcohol dehydrogenase

Asn:

Asparagine

PIMT:

Protein l-isoaspartyl methyl transferase

IsoAsp:

Isoaspartate

l-Asp:

l-aspartate

ES complex:

Enzyme-substrate complex

References

  1. Venkatesh, Y. P., & Vithayathil, P. J. (1984). International Journal of Peptide and Protein Research, 23, 494–505.

    Article  CAS  Google Scholar 

  2. Soren, D., Jana, M., Sengupta, S., & Ghosh, A. K. (2010). Applied Biochemistry and Biotechnology, 162, 373–389.

    Article  CAS  Google Scholar 

  3. Moon, Y. H., Iakiviak, M., Bauer, S., Mackie, R. I., & Cann, I. K. O. (2011). Applied and Environmental Microbiology, 77, 5157–5169.

    Article  CAS  Google Scholar 

  4. Biswas, N., & Ghosh, A. K. (1996). Biochimica et Biophysica Acta, 1290, 95–100.

    Article  Google Scholar 

  5. Parrou, J. L., Jules, M., Beltran, G., & Francois, J. (2005). FEMS Yeast Research, 5, 503–511.

    Article  CAS  Google Scholar 

  6. Ingrosso, D., Perna, A. F., D’Angelo, S., Buro, M. D., Malanga, P., Galetti, P., De Rosa, M., & Zappia, V. (1997). Journal of Nutrition and Biochemistry, 8, 535–540.

    Article  CAS  Google Scholar 

  7. Basu, A., Chaudhuri, P., Malakar, D., & Ghosh, A. K. (2008). Biotechnology Letters, 30, 299–304.

    Article  CAS  Google Scholar 

  8. Cimmino, A., Capasso, R., Muller, F., Sambri, I., Masella, L., Raimo, M., De Bonis, M. L., D’Angelo, S., Zappia, V., Galletti, P., & Ingrosso, D. (2008). PloS One, 3, 1–11.

    Article  Google Scholar 

  9. Kameoka, D., Ueda, T., & Imoto, T. (2003). Journal of Biochemistry, 134, 129–135.

    Article  CAS  Google Scholar 

  10. Zhu, J. X., Doyle, H. A., Mamula, M. J., & Aswad, D. W. (2006). Journal of Biological Chemistry, 281, 33802–33813.

    Article  CAS  Google Scholar 

  11. Clarke, S. (1993). Current Opinion in Cell Biology, 5, 977–983.

    Article  CAS  Google Scholar 

  12. Johnson, B. A., Shirokawa, J. M., & Aswad, D. W. (1989). Archives of Biochemistry and Biophysics, 268, 276–286.

    Article  CAS  Google Scholar 

  13. Young, G. W., Hoofring, S. A., Mamula, M. J., Doyle, H. A., Bunick, G. J., Hu, Y., & Aswad, D. W. (2005). Journal of Biological Chemistry, 280, 26094–26098.

    Article  CAS  Google Scholar 

  14. Gomez, T. A., Banfield, K. L., & Clarke, S. (2008). Mechanisms of Ageing and Development, 129, 752–758.

    Article  CAS  Google Scholar 

  15. Khare, S., Linster, C. L., & Clarke, S. (2011). PloS One, 6(6), e 20850.

    Article  CAS  Google Scholar 

  16. Rivers, J., McDonald, L., Edwards, I. J., & Beynon, R. J. (2008). Journal of Proteome Research, 7, 921–927.

    Article  CAS  Google Scholar 

  17. Liu, H., Gaza-Bulseco, G., & Chumsae, C. (2008). Rapid Communications in Mass Spectrometry, 22(24), 4081–4088.

    Article  CAS  Google Scholar 

  18. Kosky, A. A., Razzaq, U. O., Treuheit, M. J., & Brems, D. N. (1999). Protein Sciences, 8, 2519–2523.

    Article  CAS  Google Scholar 

  19. Bergmeyer, H.U. and Bernt, E. (1974) Determination of glucose by oxidase and peroxidase. In H.U. Bergmeyer and Gawehen, K. (Eds), Methods of enzymatic analysis (pp. 1205–1215). New York: Academic

  20. Basu, A., Bhattacharyya, S., Chaudhuri, P., Sengupta, S., & Ghosh, A. K. (2006). Biochimica et Biophysica Acta, 1760, 134–140.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Biswas, N., & Ghosh, A. K. (1997). Biochimica et Biophysica Acta, 1335, 273–282.

    Article  CAS  Google Scholar 

  23. DeLunaa, A., Quezadaa, H., Go’mez-aPuyoub, A., & Gonza’leza, A. (2005). Biochemical and Biophysical Research Communications, 328, 1083–1090.

    Article  Google Scholar 

  24. Brennan, T. V., Anderson, J. W., Jia, Z., Waygood, E. B., & Clarke, S. (1994). Journal of Biological Chemistry, 269, 24586–24595.

    CAS  Google Scholar 

  25. Smales, C. M., Marchant, R. J., & Underhill, M. F. (2005). Methods in Molecular Biology, 308, 375–379.

    CAS  Google Scholar 

  26. Sankararaman, S., Sha, F., Kirsch, J. F., Jordan, M. I., & Sjölander, K. (2010). Bioinformatics, 26, 617–624.

    Article  CAS  Google Scholar 

  27. Khare, S., Gomez, T., Linster, C. L., & Clarke, S. (2009). Mechanisms of Ageing and Development, 130, 670–680.

    Article  CAS  Google Scholar 

  28. Kagan, R. M., Mcfadden, H. J., Mcfadden, P. N., O’Connor, C., & Clarke, S. (1997). Comparative Biochemistry and Physiology, 117B, 379–385.

    CAS  Google Scholar 

  29. Reissner, K. J., & Aswad, D. W. (2003). Cellular and Molecular Life Sciences, 60, 1281–1295.

    Article  CAS  Google Scholar 

  30. Riha, W. E., Izzo, H. V., Zhang, J., & Ho, C. T. (1996). Critical Reviews in Food Science and Nutrition, 36(3), 225–255.

    Article  CAS  Google Scholar 

  31. Gershon, H., & Gershon, D. (1970). Nature, 227, 1214–1217.

    Article  CAS  Google Scholar 

  32. Robinson, N. E. (2004). Journal of Peptide Research, 63, 437–448.

    Article  CAS  Google Scholar 

  33. Patel, K., & Borchardt, R. T. (1990). Pharmaceutical Research, 7(8), 787–793.

    Article  CAS  Google Scholar 

  34. Takata, T. J., Oxford, T., Demeler, B., & Lampi, K. J. (2008). Protein Sciences, 17, 1565–1575.

    Article  CAS  Google Scholar 

  35. Robinson, A. B. (1974). Analytical Biochemistry, 59, 319–322.

    Article  Google Scholar 

  36. Robinson, N. E. (2002). PNAS, 99, 5283–5288.

    Article  CAS  Google Scholar 

  37. Sun, A. Q., Umit Yuksel, K., Jagannatha Rao, G. S., & Gracy, R. W. (1992). Archives of Biochemistry and Biophysics, 295, 421–428.

    Article  CAS  Google Scholar 

  38. Chelius, D., Rehder, D. S., & Bondarenko, P. V. (2005). Analytical Chemistry, 77, 6004–6011.

    Article  CAS  Google Scholar 

  39. Johnson, B. A., Langmack, E. L., & Aswad, D. W. (1987). Journal of Biological Chemistry, 262, 12283–12287.

    CAS  Google Scholar 

  40. Paranandi, M. V., Guzzetta, A. W., Hancock, W. S., & Aswad, D. W. (1994). Journal of Biological Chemistry, 269, 243–253.

    CAS  Google Scholar 

  41. Yuksel, K. U., & Gracy, R. W. (1986). Archives of Biochemistry and Biophysics, 248, 452–459.

    Article  CAS  Google Scholar 

  42. Lee, J. C., Kang, S. U., Jeon, Y., Park, J. W., You, J. S., Ha, S. W., Bae, N., Lubec, G., Kwon, S. H., Lee, J. S., Cho, E. J., & Han, J. W. (2012). Nature Communications, 3, 927–942.

    Article  Google Scholar 

  43. Sambri, I., Capasso, R., Pucci, P., Perna, A. F., & Ingrosso, D. (2011). Journal of Biological Chemistry, 286, 43690–43700.

    Article  CAS  Google Scholar 

  44. Solstad, T., Carvalho, R. N., Andersen, O., Waidelich, A. D., & Flatmark, T. (2003). European Journal of Biochemistry, 270, 929–938.

    Article  CAS  Google Scholar 

  45. Robinson, N. E., & Robinson, A. B. (2004). Molecular clocks. Deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Oregon: Althouse Press.

    Google Scholar 

  46. Xie, M., & Schowen, R. L. (1999). Journal of Pharmaceutical Sciences, 88, 8–13.

    Article  CAS  Google Scholar 

  47. Wakankar, A. A., & Borchardt, R. L. (2006). Journal of Pharmaceutical Sciences, 95, 2321–2336.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank The Director, IICB, for financial support from CSIR, Network Project NWP 0005 and Mr. Sandeep Chakraborty for his assistance in MALDI-TOF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, T., Banerjee, S., Soren, D. et al. Regulation of Enzymatic Activity by Deamidation and Their Subsequent Repair by Protein l-isoaspartyl Methyl Transferase. Appl Biochem Biotechnol 168, 2358–2375 (2012). https://doi.org/10.1007/s12010-012-9942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9942-y

Keywords

Navigation