Skip to main content
Log in

An Extremely Alkaline Novel Xylanase from a Newly Isolated Streptomyces Strain Cultivated in Corncob Medium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces sp. CS802, recently isolated from Korean soil, produced xylanase in corncob medium. An extracellular xylanase (Xyn802) was purified by a single-step gel filtration and biochemical properties were studied. It showed high activity in extremely alkaline condition with optimum pH at 12.0 and exhibited stability between pH 7.5 and 13.0. It produced xylobiose and xylotriose as the major products from xylan, suggesting its endoxylanase nature. N-terminal amino acid sequences of Xyn802 were ADRNANRD which are significantly different from the reported xylanase. The activity was enhanced by various detergents and a reducing agent and stable in various organic solvents. Xyn802 produced by utilizing corncob, an agro-waste material, might be a novel xylanase based on its peculiar biochemical characteristics, and it can be a suitable candidate for the production of xylooligosaccharides including other useful products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shin, J.-H., Choi, J.-H., Lee, O.-S., Kim, Y.-M., Lee, D.-S., Kwak, Y.-Y., Kim, W.-C., & Rhee, I.-K. (2009). Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. Biotechnology and Bioprocess Engineering, 14, 391–399.

    Article  CAS  Google Scholar 

  2. Ai, Z., Jiang, Z., Li, L., Deng, W., Kusakabe, I., & Li, H. (2005). Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochemistry, 40, 2707–2714.

    Article  CAS  Google Scholar 

  3. Vázquez, M. J., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2000). Xylooligosaccharides: manufacture and applications. Trends in Food Science and Technology, 11, 387–393.

    Article  Google Scholar 

  4. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  5. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  6. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  7. Yan, Q., Hao, S., Jiang, Z., Zhai, Q., & Chen, W. (2009). Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatics, 58, 72–77.

    Article  CAS  Google Scholar 

  8. Georis, J., Giannotta, F., De Buyl, E., Granier, B., & Frère, J.-M. (2000). Purification and properties of three endo-[beta]-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme and Microbial Technology, 26, 178–186.

    Article  CAS  Google Scholar 

  9. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2008). Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology, 99, 1252–1258.

    Article  CAS  Google Scholar 

  10. Kaneko, S., Kuno, A., Muramatsu, M., Iwamatsu, S., Kusakabe, I., & Hayashi, K. (2000). Purification and characterization of a family G/11 xylanase from Streptomyces olivaceoviridis E-86. Bioscience, Biotechnology, and Biochemistry, 64, 447–451.

    Article  CAS  Google Scholar 

  11. Wang, S.-L., Yen, Y.-H., Shih, I.-L., Chang, A. C., Chang, W.-T., Wu, W.-C., & Chai, Y.-D. (2003). Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme and Microbial Technology, 33, 917–925.

    Article  CAS  Google Scholar 

  12. Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., & Song, H. (2010). Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal, 52, 71–78.

    Article  CAS  Google Scholar 

  13. Nanmori, T., Watanabe, T., Shinke, R., Kohno, A., & Kawamura, Y. (1990). Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. Journal of Bacteriology, 172, 6669–6672.

    CAS  Google Scholar 

  14. Simkhada, J., Cho, S., Choi, H., Kim, S., Lee, H., Sohng, J., & Yoo, J. (2010). A new thermolabile alkaline phospholipase D from Streptomyces sp. CS628. Biotechnology and Bioprocess Engineering, 15, 595–602.

    Article  CAS  Google Scholar 

  15. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. Journal of Bioscience and Bioengineering, 111, 528–536.

    Article  CAS  Google Scholar 

  19. Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N. and Devi, A (2012). Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food and Bioproducts Processing (in press)

  20. Kumar, A., Gupta, R., Shrivastava, B., Khasa, Y. P., & Kuhad, R. C. (2012). Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. Journal of Molecular Catalysis B: Enzymatics, 74, 170–177.

    Article  CAS  Google Scholar 

  21. Morosoli, R., Bertrand, J. L., Mondou, F., Shareck, F., & Kluepfel, D. (1986). Purification and properties of a xylanase from Streptomyces lividans. Biochemical Journal, 239, 587–592.

    CAS  Google Scholar 

  22. Deesukon, W., Nishimura, Y., Harada, N., Sakamoto, T., & Sukhumsirichart, W. (2011). Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Process Biochemistry, 46, 2255–2262.

    Article  CAS  Google Scholar 

  23. Qiu, Z., Shi, P., Luo, H., Bai, Y., Yuan, T., Yang, P., Liu, S., & Yao, B. (2010). A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme and Microbial Technology, 46, 506–512.

    Article  CAS  Google Scholar 

  24. Zhou, J., Shi, P., Zhang, R., Huang, H., Meng, K., Yang, P., & Yao, B. (2011). Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. Journal of Industrial Microbiology and Biotechnology, 38, 523–530.

    Article  CAS  Google Scholar 

  25. Kim, D. Y., Han, M. K., Oh, H.-W., Park, D.-S., Kim, S.-J., Lee, S.-G., Shin, D.-H., Son, K.-H., Bae, K. S., & Park, H.-Y. (2010). Catalytic properties of a GH10 endo-β-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. Journal of Molecular Catalysis B: Enzymatics., 62, 32–39.

    Article  CAS  Google Scholar 

  26. Giridhar, P. V., & Chandra, T. S. (2010). Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochemistry, 45, 1730–1737.

    Article  CAS  Google Scholar 

  27. Taneja, K., Gupta, S., & Chander Kuhad, R. (2002). Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresource Technology, 85, 39–42.

    Article  CAS  Google Scholar 

  28. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  29. Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  30. Techapun, C., Poosaran, N., Watanabe, M., & Sasaki, K. (2003). Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochemistry, 38, 1327–1340.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research fund from Chosun University, 2012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Wook Kim or Jin Cheol Yoo.

Additional information

Jaya Ram Simkhada and Hah-Young Yoo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simkhada, J.R., Yoo, HY., Choi, Y.H. et al. An Extremely Alkaline Novel Xylanase from a Newly Isolated Streptomyces Strain Cultivated in Corncob Medium. Appl Biochem Biotechnol 168, 2017–2027 (2012). https://doi.org/10.1007/s12010-012-9914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9914-2

Keywords

Navigation