Skip to main content
Log in

MYMIV-AC2, a Geminiviral RNAi Suppressor Protein, Has Potential to Increase the Transgene Expression

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gene silencing is one of the limiting factors for transgene expression in plants. But the plant viruses have learnt to suppress gene silencing by encoding the protein(s), called RNA silencing suppressor(s) (RSS). Hence, these proteins could be used to overcome the limitation for transgene expression. The RNAi suppressors, namely HC-Pro and P19, have been shown to enhance the transgene expression but other RSS proteins have not been screened for similar role. Moreover, none of RSSs from the DNA viruses are known for enhancing the expression of transgenes. The Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus Begomovirus within the family of Geminiviridae encodes an RSS called the AC2 protein. Here, we used AC2 to elevate the expression of the transgenes. Upon introduction of MYMIV-AC2 in the silenced GFP transgenic tobacco lines, by either genetic hybridisation or transgenesis, the GFP expression was enhanced several fold in F1 and T0 lines. The GFP-siRNA levels were much reduced in F1 and T0 lines compared with those of the initial parental silenced lines. The enhanced GFP expression was also observed at the cellular level. This approach was also successful in enhancing the expression of another transgene, namely topoisomeraseII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GM:

Genetically modified

PTGS:

Post-translational gene silencing

TGS:

Transcriptional gene silencing

RNAi:

RNA interference

RdRP:

RNA-dependent RNA polymerase

MYMIV:

Mungbean Yellow Mosaic India Virus

VIGS:

Virus-induced gene silencing

GFP:

Green florescent protein

RSS:

RNA silencing suppressors

CaMV:

Cauliflower mosaic virus

MiRs:

Micro-RNAs

References

  1. Schillberg, S., Fischer, R., & Emans, N. (2003). ‘Molecular farming’ of antibodies in plants. Naturwissenschaften, 90, 145–155.

    CAS  Google Scholar 

  2. Thanavala, Y., Huang, Z., & Mason, H. S. (2006). Plant-derived vaccines: a look back at the highlights and a view to the challenges on the road ahead. Expert Review of Vaccines, 5, 249–260.

    Article  CAS  Google Scholar 

  3. Fischer, R., & Emans, N. (2000). Molecular farming of pharmaceutical proteins. Transgenic Research, 9, 279–299.

    Article  CAS  Google Scholar 

  4. Sorrentino, A., Schillberg, S., Fischer, R., Porta, R., & Mariniello, L. (2009). Molecular farming of human tissue transglutaminase in tobacco plants. Amino Acids, 36, 765–772.

    Article  CAS  Google Scholar 

  5. De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., & Depicker, A. (2000). Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Molecular Biology, 43, 347–359.

    Article  Google Scholar 

  6. Fagard, M., & Vaucheret, H. (2000). (Trans)gene silencing in plants: How many mechanisms? Annual Review Plant Physiology Plant Molecular Biology, 51, 167–194.

    Article  CAS  Google Scholar 

  7. Alvarez, M. L., Pinyerd, H. L., Topal, E., & Cardineau, G. A. (2008). P19-dependent and P19-independent reversion of F1-V gene silencing in tomato. Plant Molecular Biology, 68, 61–79.

    Article  CAS  Google Scholar 

  8. Buchon, N., & Vaury, C. (2006). RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity, 96, 195–202.

    Article  CAS  Google Scholar 

  9. Waterhouse, P. M., Wang, M. B., & Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411, 834–842.

    Article  CAS  Google Scholar 

  10. Li, F., & Ding, S. (2006). Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annual Review Microbiology, 60, 503–531.

    Article  CAS  Google Scholar 

  11. Karjee, S., Islam, M. N., & Mukherjee, S. K. (2008). Screening and identification of virus-encoded RNA silencing suppressors. Methods in Molecular Biology, 442(Karjee S), 187–203.

    Article  CAS  Google Scholar 

  12. Singh, D. K., Karjee, S., Malik, P. S., Islam, N. & Mukherjee, S. K. (2007). DNA replication and pathogenecity of MYMIV. In Communicating Current research and Educational Topics and Trends in Applied Microbiology, vol. 1: FORMATEX Microbiology series no 1 (Méndez–Vilas, A. B., ed.), Spain, FORMATEX, pp 155–162.

  13. Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology, 344(1), 158–168.

    Article  CAS  Google Scholar 

  14. Trinks, D., Rajeswaran, R., Shivaprasad, P. V., Akbergenov, R., Oakeley, E. J., Veluthambi, K., et al. (2005). Suppression of RNA silencing by geminivirus nuclear protein, AC2, correlates with transactivation of host gene. Journal of Virology, 79, 2517–2527.

    Article  CAS  Google Scholar 

  15. Haley, A., Zhan, X. C., Richardson, K., Head, K., & Morris, B. (1992). Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2 and AC3 gene products. Virology, 188, 905–909.

    Article  CAS  Google Scholar 

  16. Rajeswaran, R., Sunitha, S., Shivaprasad, P. V., Pooggin, M. M., Hohn, T., & Veluthambi, K. (2007). The Mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco. Molecular Plant-Microbe Interactions, 20, 1545–1554.

    Article  CAS  Google Scholar 

  17. Shivaprasad, P. V., Akbergenov, R., Trinks, D., Rajeswaran, R., Veluthambi, K., Hohn, T., et al. (2005). Promoters, transcripts, and regulatory proteins of mungbean yellow mosaic geminivirus. Journal of Virology, 79, 8149–8163.

    Article  CAS  Google Scholar 

  18. Sunter, G., & Bisaro, D. M. (1991). Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology, 180, 416–419.

    Article  CAS  Google Scholar 

  19. Sunter, G., & Bisaro, D. M. (1992). Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. The Plant Cell, 4, 1321–1331.

    CAS  Google Scholar 

  20. Sunter, G., & Bisaro, D. M. (1997). Regulation of a geminivirus coat protein promoter by AL2 protein (Trap): Evidence for activation and derepression mechanisms. Virology, 232, 269–280.

    Article  CAS  Google Scholar 

  21. Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 14147–14152.

    Article  CAS  Google Scholar 

  22. Hartitz, M. D., Sunter, G., & Bisaro, D. M. (1999). The geminivirus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology, 263, 1–14.

    Article  CAS  Google Scholar 

  23. Mallory, A. C., Parks, G., Endres, M. W., Baulcombe, D., Bowman, L. H., Pruss, G. J., et al. (2002). The amplicon-plus system for high-level expression of transgenes in plants. Nature Biotechnology, 20, 622–625.

    Article  CAS  Google Scholar 

  24. Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33, 949–956.

    Article  CAS  Google Scholar 

  25. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  26. Sharma, A. D., Gill, P. K., & Singh, P. (2002). DNA isolation from dry and fresh samples of polysaccharide-rich plants. Plant Mol Biol Reporter, 20, 415a–415f.

    Article  Google Scholar 

  27. Bart, R., Chern, M., Park, C. J., Bartley, L., & Ronald, P. C. (2006). A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods, 2006(2), 13.

    Article  Google Scholar 

  28. Pham, X. H., Reddy, M. K., Ehtesham, N. Z., Matta, B., & Tuteja, N. (2000). A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomeraseI activity. The Plant Journal, 24, 219–229.

    Article  CAS  Google Scholar 

  29. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., et al. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences of the United States of America, 95, 13079–13084.

    Article  CAS  Google Scholar 

  30. Kasschau, K. D., & Carrington, J. C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 95, 461–470.

    Article  CAS  Google Scholar 

  31. Ma, P., Liu, J., He, H., Yang, M., Li, M., Zhu, X., et al. (2009). A viral suppressor P1/HC-pro increases the GFP gene expression in Agrobacterium-mediated transient assay. Applied Biochemistry and Biotechnology, 158(2), 243–252.

    Article  CAS  Google Scholar 

  32. Mallory, A. C., Ely, L., Smith, T. H., Marathe, R., Anandalakshmi, R., Fagard, M., et al. (2001). HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. The Plant Cell, 13, 571–583.

    CAS  Google Scholar 

  33. Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136, 669–687.

    Article  CAS  Google Scholar 

  34. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., & Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes & Development, 18, 1179–1186.

    Article  CAS  Google Scholar 

  35. Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2005). MicroRNA-binding viral protein interferes with Arabidopsis development. Proceedings of the National Academy of Sciences of the United States of America, 102, 10381–10386.

    Article  CAS  Google Scholar 

  36. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. The Plant Cell, 16, 1235–1250.

    Article  CAS  Google Scholar 

  37. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., et al. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4, 205–217.

    Article  CAS  Google Scholar 

  38. Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA regulation of NACdomain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology, 14, 1035–1046.

    Article  CAS  Google Scholar 

  39. Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 12, 1484–1495.

    Article  Google Scholar 

  40. Siddiqui, S. A., Sarmiento, C., Truve, E., Lehto, H., & Lehto, K. (2008). Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Molecular Plant-Microbe Interactions, 21, 178–187.

    Article  CAS  Google Scholar 

  41. Stav, R., Hendelman, A., Buxdorf, K., & Arazi, T. (2010). Transgenic expression of tomato bushy stunt virus silencing suppressor P19 via the pOp/LhG4 transactivation system induces viral-like symptoms in tomato. Virus Genes, 40, 119–129.

    Article  CAS  Google Scholar 

  42. Bastar, M. T., Luthar, Z., Škof, S., & Bohanec, B. (2004). Quantiative determination of mosaic GFP gene expression in tobacco. Plant Cell Reports, 22, 939–944.

    Article  CAS  Google Scholar 

  43. Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., et al. (2010). Quantifying E. coli proteome and transcriptome with single molecule sensitivity in single cells. Science, 329, 533–538.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Professor David C. Baulcombe, UK for providing the mGFP gene. We are also thankful to Professor M. V. Rajam, Delhi University South Campus for providing the TOPOII transgenic T2 tobacco lines. We thank Dr. M. N. Islam for his initial efforts to develop GFP-silenced lines. This research was supported by grants from International Centre for Genetic Engineering and Biotechnology (ICGEB) and Department of Biotechnology, New Delhi, India. The financial assistance of DBT and CSIR (India) to SM and SK are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Mukherjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PPT 81 kb)

Fig. S2

(PPT 222 kb)

Fig. S3

(PPT 2.20 MB)

Fig. S4

(PPT 424 kb)

Fig. S5

(PPT 178 kb)

Table S1

(PPT 110 kb)

Table S2

(PPT 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, J., Karjee, S. & Mukherjee, S.K. MYMIV-AC2, a Geminiviral RNAi Suppressor Protein, Has Potential to Increase the Transgene Expression. Appl Biochem Biotechnol 167, 758–775 (2012). https://doi.org/10.1007/s12010-012-9702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9702-z

Keywords

Navigation