Skip to main content
Log in

One Step Conversion of Wheat Straw to Sugars by Simultaneous Ball Milling, Mild Acid, and Fungus Penicillium simplicissimum Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buaban, B., Inoue, H., & Yano, S. (2010). Bioprocess Engineering, 110, 18–25.

    CAS  Google Scholar 

  2. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  3. Arora, D. J., Chander, M., & Gill, P. K. (2002). International Biodeterioration and Biodegradation, 68, 115–120.

    Article  Google Scholar 

  4. Zhang, W., Liang, M., & Lu, C. (2007). Cellulose, 14, 447–456.

    Article  CAS  Google Scholar 

  5. Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. Y. (1980). Biotechnology and Bioengineering, 22, 1689–1705.

    Article  CAS  Google Scholar 

  6. Millet, M. A., Baker, A. J., & Scatter, L. D. (1976). Biotechnology & Bioengineering Symposium, 6, 125–153.

    Google Scholar 

  7. Inoue, H., Yano, S., Endo, T., Sasaki, T., & Sawayama, S. (2008). Biotechnology for Biofuels, 1, 1–9.

    Article  Google Scholar 

  8. Hideno, A., Inoue, H., Tsukahara, K., & Fujimoto, S. (2009). Bioresource Technology, 100, 2706–2711.

    Article  CAS  Google Scholar 

  9. Hideno, A., Inoue, H., Yanagida, T., Tsukahara, K., Endo, T., & Sawayama, S. (2012). Bioresource Technology, 104, 743–748.

    Article  CAS  Google Scholar 

  10. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Bioresource Technology, 59, 129–136.

    Article  CAS  Google Scholar 

  11. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  12. Papatheofanous, M. G., Billa, E., Koullas, D. P., Monties, B., & Koukios, E. G. (1995). Bioresource Technology, 54(3), 305–310.

    Article  CAS  Google Scholar 

  13. Yan, Y., Li, T., Ren, Z., & Li, G. (1996). Bioresource Technology, 57(3), 269–273.

    Article  CAS  Google Scholar 

  14. Iranmahboob, J., Nadim, F., & Monemi, S. (2002). Biomass and Bioenergy, 22(5), 401–404.

    Article  CAS  Google Scholar 

  15. Kim, K. H., Tucker, M., & Nguyen, Q. (2005). Bioresource Technology, 96(11), 1249–1255.

    Article  CAS  Google Scholar 

  16. Kim, K. H., Eom, I. Y., Lee, S. M., Cho, S. T., Choi, I. G., & Choi, J. W. (2010). Journal of Industrial and Engineering Chemistry, 16, 918–922.

    Article  CAS  Google Scholar 

  17. Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Bioresource Technology, 99, 1869–1876.

    Article  CAS  Google Scholar 

  18. Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., & Holladay, J. E. (2006). Energy & Fuels, 20, 807–811.

    Article  CAS  Google Scholar 

  19. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40, 3693–3700.

    Article  CAS  Google Scholar 

  20. Téllez-Luis, S. J., Ramírez, J. A., & Vázquez, M. (2002). Journal of the Science of Food and Agriculture, 82(5), 505–512.

    Article  Google Scholar 

  21. Hua, R., Lin, L., Liu, T., & Liu, S. (2010). Bioresource Technology, 101, 3586–3594.

    Article  Google Scholar 

  22. Zhou, J., Chen, D., & Zhu, Y. (2010). Journal of Chemical Technology and Biotechnology, 85, 85–90.

    Article  CAS  Google Scholar 

  23. Patel, S. J., Onkarappa, R., & Shobha, K. S. (2007). The Internet Journal of Microbiology, 4, 116–121.

    Google Scholar 

  24. Guchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Bioscience and Bioengineering, 100, 637–643.

    Article  Google Scholar 

  25. Mikan, V. J. F., & Castellanos, S. D. E. (2004). Revista Colombiana de Biotecnología, 6, 58–67.

    Google Scholar 

  26. Sanche, Z. C. (2009). Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  27. Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  28. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  29. Graf, A. & Koehler, T. (2000). Oregon Dept of Energy, pp.96

  30. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  31. Dai, J., Wu, Y., Chen, S. W., Zhu, S., Yin, H. P., Wang, M., et al. (2010). Carbohydrate Polymers, 82, 629–635.

    Article  CAS  Google Scholar 

  32. Segal, L., Creely, J. J., & Martin, A. E. (1959). Textile Research, 29, 786–794.

    Article  CAS  Google Scholar 

  33. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  34. Cruz, J. M., Dominguez, J. M., Dominguez, H., & Paraj, J. C. (2000). Food Biotechnology, 14(1&2), 79–97.

    Article  CAS  Google Scholar 

  35. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  36. McMillan, J. D. (1994). Enzymatic Conversion of Biomass for Fuels Production, 15, 292–324.

    Article  Google Scholar 

  37. Mussatto, S. I. M., & Roberto, I. C. A. (2004). Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  38. Wood, P. J., & Fulcher, R. G. (1980). Cereal Chemistry, 55, 952–966.

    Google Scholar 

  39. Wood, P. J. (1980). Industrial and Engineering Chemistry Product Research and Development, 19, 19–23.

    Article  CAS  Google Scholar 

  40. Wood, P. J. (1980). Carbohydrate Research, 85, 271–287.

    Article  CAS  Google Scholar 

  41. Teather, R. D., & Wood, P. J. (1982). Applied and Environmental Microbiology, 43(4), 777–780.

    CAS  Google Scholar 

  42. Furcht, P. W., & Silla, H. (1990). Biotechnology and Bioengineering, 35, 630–645.

    Article  CAS  Google Scholar 

  43. Liao, H. D., Chen, D., & Yuan, L. (2010). Carbohydrate Polymers, 82, 600–604.

    Article  CAS  Google Scholar 

  44. Liimatainena, H., & Sirvi, J. (2011). Carbohydrate Polymers, 83, 2005–2010.

    Article  Google Scholar 

  45. Ago, M., & Endo, T. (2004). Cellulose, 11, 163–167.

    Article  CAS  Google Scholar 

  46. Mikushina, I. V., Troitskaya, I. B., & Dushkin, A. V. (2003). Chemistry for Sustainable Development, 11, 363–370.

    Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial supported by Program for New Century Excellent Talents in University (NCET-10-0360) and the Fundamental Research Funds for the Central Universities, Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Chen, Z., Zhu, Y. et al. One Step Conversion of Wheat Straw to Sugars by Simultaneous Ball Milling, Mild Acid, and Fungus Penicillium simplicissimum Treatment. Appl Biochem Biotechnol 167, 39–51 (2012). https://doi.org/10.1007/s12010-012-9655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9655-2

Keywords

Navigation