Skip to main content
Log in

Topoisomerase Inhibition, Nucleolytic and Electrolytic Contribution on DNA Binding Activity Exerted by Biological Active Analogue of Coordination Compounds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The neutral mononuclear copper complexes with the quinolone antibacterial drug ciprofloxacin and bipyridine derivatives have been synthesized and characterized. Complexes were screened for their antibacterial activity against three Gram(−) and two Gram(+) bacteria, and study suggests inhibition of gyrase activity by metal complexes as the possible mechanism. The nucleolytic activity of adducts was carried out on double stranded pUC19 DNA using gel electrophoresis in the presence of radical scavenging agents that suggest hydrolytic cleavage mechanism for plasmid DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hillman, R. E., Dandliker, P. J., & Barton, J. K. (1997). Angewandte Chemie (International Ed. in English), 36, 2714.

    Article  Google Scholar 

  2. Dupureur, C., & Barton, J. K. (1997). In J. M. Lehn (Ed.), Comprehensive supramolecular chemistry. New York: Pergamon.

    Google Scholar 

  3. Rodkey, L. S., Gololobov, G., Rumbley, C. A., Rumbley, J., Schourov, D. V., Makarevich, O. I., Gabibov, A. G., & Voss, E. W., Jr. (2000). Applied Biochemistry and Biotechnology, 83, 95–105.

    Article  CAS  Google Scholar 

  4. Norden, B., Lincoln, P., Akerman, B., & Tuite, E. (1996). In A. Sigel & H. Sigel (Eds.), Metal ions in biological systems: Probing of nucleic acids by metal ion complexes of small molecules. New York: Marcel Dekker.

    Google Scholar 

  5. Sigman, D. S., Mazumder, A., & Perrin, D. M. (1993). Chemistry Review, 93, 2295.

    Article  CAS  Google Scholar 

  6. Shahabadi, N., Kashanian, S., Shalmashi, K., & Roshanfekr, H. (2009). Applied Biochemistry and Biotechnology, 158, 1–10.

    Article  CAS  Google Scholar 

  7. Sundquist, W. I., & Lippard, S. J. (1990). Coordination Chemistry Reviews, 100, 293.

    Article  CAS  Google Scholar 

  8. Mathur, S., & Tabassum, S. (2006). Central European Journal of Chemistry, 4(3), 502.

    Article  CAS  Google Scholar 

  9. Cheng, J. P., Lin, Q. Y., Hu, R. D., Zhu, W. Z., Li, H. Q., & Wang, D. H. (2009). Central European Journal of Chemistry, 7(1), 105.

    Article  CAS  Google Scholar 

  10. Bayülken, S., Sezai Saraç, A., Özkara, S., Sezer, E., & Ardagil, N. (2001). Applied Biochemistry and Biotechnology, 90, 23–35.

    Article  Google Scholar 

  11. West, D. X., Liberta, A. E., Chinate, S. B., Sonawane, P. B., Kumbhar, A. S., & Yerande, R. G. (1993). Coordination Chemistry Reviews, 123, 49.

    Article  CAS  Google Scholar 

  12. Deepa, K. P., & Aravindakshan, K. K. (2004). Applied Biochemistry and Biotechnology, 118, 283–292.

    Article  CAS  Google Scholar 

  13. King, D. E., Malone, R., & Lilley, S. H. (2000). American Family Physician, 61, 2741.

    CAS  Google Scholar 

  14. Hooper, D. C., & Wolfson, J. S. (1993). Quinolone antimicrobial agents. Washington, DC: American Society of Microbiology.

    Google Scholar 

  15. Gellet, M., Mizuuchi, K., O’Dea, M. H., & Nash, H. A. (1976). Proceedings of the National Academy of Sciences of the United States of America, 73, 3872.

    Article  Google Scholar 

  16. Gootz, T. D., Larrent, J. F., & Suteliffe, J. A. (1990). Antimicrobial Agents and Chemotherapy, 34, 8.

    CAS  Google Scholar 

  17. Patel, M. N., Chhasatia, M. R., & Bhatt, B. S. (2010). Medicinal Chemistry Research, 20(2), 220–230.

    Article  Google Scholar 

  18. Chohan, Z. H., Suparan, C. T., & Scozzafava, A. (2005). Journal of Enzyme Inhibition and Medicinal Chemistry, 23, 303.

    Article  Google Scholar 

  19. Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley.

    Google Scholar 

  20. Anacona, J. R., & Rodriguez, I. (2004). Journal of Coordination Chemistry, 57, 1263–1269.

    Article  CAS  Google Scholar 

  21. Freedman, H. H. (1961). Journal of the American Chemical Society, 83, 2900–2905.

    Article  CAS  Google Scholar 

  22. Patel, R., & Patel, R. (1974). Molecular spectroscopy: Theory and applications. Vallabh Vidyanagar: S. P University Press.

    Google Scholar 

  23. Patel, N. H., Panchal, P. K., Pansuriya, P. B., & Patel, M. N. (2006). Journal of Macromolecular Science, Part A-Pure and Applied Chemistry, 43, 1083.

    Article  CAS  Google Scholar 

  24. Pansuriya, P. B., Dhnadhukia, P., Thakkar, V., & Patel, M. N. J. (2007). Enzyme Inhibition and Medicinal Chemistry, 22, 477.

    Article  CAS  Google Scholar 

  25. Iskander, M. F., EL-Sayed, L., Salem, N. M. H., & Warner, R. W. J. (2005). Coordination Chemistry, 58, 125–139.

    Article  CAS  Google Scholar 

  26. Melnik, M. (1981). Coordination Chemistry Reviews, 36, 1–44.

    Article  CAS  Google Scholar 

  27. Carballo, R., Castineiras, A., Covelo, B., Garcia-Martinez, E., Niclos, J., & Vazquez-Lopez, E. M. (2004). Polyhedron, 23, 1505–1518.

    Article  CAS  Google Scholar 

  28. Figgis, B. N., & Lewis, J. (1960). In J. Lewis & R. G. Wilkins (Eds.), Modern coordination chemistry: Principles and methods. New York: Wiley.

    Google Scholar 

  29. Turel, I. (2002). Coordination Chemistry Reviews, 23, 27.

    Article  Google Scholar 

  30. Palu, G., Valisena, S., Ciarocchi, G., Gatto, B., & Palumbo, M. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 9671.

    Article  CAS  Google Scholar 

  31. Roca, J., Ishida, R., Berger, J., Andoh, T., & Wang, J. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 1781.

    Article  CAS  Google Scholar 

  32. Chen, G., Yang, L., Rowe, T., Halligan, B., Tewey, K., & Liu, L. J. (1984). Biological Chemistry, 259, 13560.

    CAS  Google Scholar 

  33. Robinson, M., & Osheroff, N. (1991). Biochemistry, 30, 1807.

    Article  CAS  Google Scholar 

  34. Arounaguiri, S., & Maiya, B. G. (1996). Inorganic Chemistry, 35, 4267.

    Article  CAS  Google Scholar 

  35. Zhu, W. Z., Hu, R. D., Lin, Q. Y., Wang, X. X., & Zheng, X. L. (2009). Central European Journal of Chemistry, 7(3), 569.

    Article  CAS  Google Scholar 

  36. Graham, D. R., Marshall, L. E., Reich, K. A., & Sigman, D. S. (1980). Journal of the American Chemical Society, 102, 5419.

    Article  CAS  Google Scholar 

  37. Mudasir, Wijaya, K., Yoshioka, N., & Inoue, H. (2003). Journal of Inorganic Biochemistry, 94, 263–271.

    Article  CAS  Google Scholar 

  38. Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1992). Biochemistry, 31, 9319–9324.

    Article  CAS  Google Scholar 

  39. Chaires, B., Satyanarayana, S., Suh, D., Fokt, I., Przewloka, T., & Priebe, W. (1996). Biochemistry, 35, 2047–2053.

    Article  CAS  Google Scholar 

  40. Patel, M. N., Bhatt, B. S., & Dosi, P. A. (2012). Journal of Thermal Analysis and Calorimetry, 107, 55–64.

    Article  CAS  Google Scholar 

  41. Hertzberg, R. P., & Dervan, P. B. (1982). Journal of the American Chemical Society, 104, 313–315.

    Article  CAS  Google Scholar 

  42. Kumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A., & Akbarsha, M. A. (2008). European Journal of Medicinal Chemistry, 43, 2082.

    Article  CAS  Google Scholar 

  43. Barve, A., Kumbhar, A., Bhat, M., Joshi, B., Butcher, R., Sonawane, U., & Joshi, R. (2009). Inorganic Chemistry, 48, 9120.

    Article  CAS  Google Scholar 

  44. Hollstein, V. (1974). Chemistry Review, 74, 625.

    Article  CAS  Google Scholar 

  45. Efthimiadou, E. K., Thomadaki, H., Sanakis, Y., Raptopoulou, C. P., Katsaros, N., Scorilas, A., Karaliota, A., & Psomas, G. (2007). Journal of Inorganic Biochemistry, 101, 64.

    Article  CAS  Google Scholar 

  46. Bonomo, R. P., Conte, E., Marchelli, R., Santoro, A. M., & Tabbi, G. (1994). Journal of Inorganic Biochemistry, 53, 127.

    Article  CAS  Google Scholar 

  47. Casanova, J., Alzuet, G., Borrás, J., Timoneda, J., García-Granda, S., & Cándano-González, I. (1994). Journal of Inorganic Biochemistry, 56, 65.

    Article  CAS  Google Scholar 

  48. Miller, D. M., Buttner, G. R., & Aust, S. D. (1990). Free Radical Biology & Medicine, 8, 95.

    Article  CAS  Google Scholar 

  49. Schepetkin, I., Potapov, A., Khlebnikov, A., Korotkova, E., Lukina, A., Malovichko, G., Kirpotina, L., & Quinn, M. T. (2006). Journal of Biological Inorganic Chemistry, 11, 499.

    Article  CAS  Google Scholar 

  50. Chao, H., Mei, W. J., Huang, Q. W., & Ji, L. N. (2002). Journal of Inorganic Biochemistry, 92, 165–170.

    Article  CAS  Google Scholar 

  51. Vogel, A. I. (1978). Textbook of quantitative inorganic analysis. London: ELBS and Longman.

    Google Scholar 

  52. Neve, F., Crispini, A., Campagna, S., & Serroni, S. (1999). Inorganic Chemistry, 38, 2250–2258.

    Article  CAS  Google Scholar 

  53. Cohen, G., & Eisenberg, H. (1969). Biopoly, 8, 45–55.

    Article  CAS  Google Scholar 

  54. Reichmann, M. E., Rice, S. A., Thomas, C. A., & Doty, P. (1954). Journal of the American Chemical Society, 76, 3047–3053.

    Article  CAS  Google Scholar 

  55. Wolfe, A., Shimer, G. H., & Meehan, T. (1987). Biochemistry, 26, 6392–6392.

    Article  CAS  Google Scholar 

  56. Maniatis, T., Fritsch, E. F., & Sambrook, J. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  57. Ramadan, A. M., & EI-Naggar, M. M. (1996). Journal of Inorganic Biochemistry, 63, 143–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the authority Head, Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India for providing the laboratory facilities. The authors would also like to acknowledge U.G.C. for providing financial assistance through UGC grant 32-226/2006(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan N. Patel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M.N., Bhatt, B.S. & Dosi, P.A. Topoisomerase Inhibition, Nucleolytic and Electrolytic Contribution on DNA Binding Activity Exerted by Biological Active Analogue of Coordination Compounds. Appl Biochem Biotechnol 166, 1949–1968 (2012). https://doi.org/10.1007/s12010-012-9623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9623-x

Keywords

Navigation