Skip to main content
Log in

Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two bis(1-pyrazolyl)alkane ligands, bis(3,5-dimethyl-1-pyrazolyl)methane and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methane, and their copper(II) complexes, bis(3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL1(NO3)2] and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL2(NO3)2]·2H2O, were prepared. Physiochemical properties of the copper(II) complexes were studied by spectroscopic (UV–vis, IR, EPR) techniques and cyclic voltammetry. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:copper(II) ion and a bindentate coordination mode for the nitrate ions in both of the complexes. According to experimental and theoretical ab initio data, the copper(II) ion is located in an octahedral hexacoordinated environment. Both complexes were able to catalyze the dismutation of superoxide anion (\( {\text{O}}^{{\bullet - }}_{{\text{2}}} \)) (pH 7.5) and decomposition of H2O2 (pH 7.5) and peroxynitrite (pH 10.9). In addition, both complexes exhibited superoxide dismutase (SOD) like activity toward extracellular and intracellular reactive oxygen species produced by activated human neutrophils in whole blood. Thus, these complexes represent useful SOD mimetics with a broad range of antioxidant activity toward a variety of reactive oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quinn MT, Gauss KA (2004) J Leukocyte Biol 76:760–781

    Article  PubMed  CAS  Google Scholar 

  2. Fang FC (2004) Nat Rev Microbiol 2:820–832

    Article  PubMed  CAS  Google Scholar 

  3. Serhan CN, Savill J (2005) Nat Immunol 6:1191–1197

    Article  PubMed  CAS  Google Scholar 

  4. McCord JM, Edeas MA (2005) Biomed Pharmacother 59:139–142

    Article  PubMed  CAS  Google Scholar 

  5. Fridovich I (1998) J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  6. Matés JM, Pérez-Gómez C, De Castro IN (1999) Clin Biochem 32:595–603

    Article  PubMed  Google Scholar 

  7. Pong K (2003) Expert Opin Biol Ther 3:127–139

    Article  PubMed  CAS  Google Scholar 

  8. Tabbi G, Driessen WL, Reedijk J, Bonomo RP, Veldman N, Spek AL (1997) Inorg Chem 36:1168–1175

    Article  PubMed  CAS  Google Scholar 

  9. Tian Y, Fang Y, Sun C, Shen W, Luo Q, Shen M (1993) Biochem Biophys Res Commun 191:646–653

    Article  PubMed  CAS  Google Scholar 

  10. Trofimenko S (1993) Chem Rev 93:943–980

    Article  CAS  Google Scholar 

  11. Mukherjee R (2000) Coord Chem Rev 203:151–218

    Article  CAS  Google Scholar 

  12. Ballesteros P, Claramunt RM, Lopez MC, Elguero J, Gomezalarcon G (1988) Chem Pharm Bull (Tokyo) 36:2036–2041

    CAS  Google Scholar 

  13. Supuran CT, Claramunt RM, Lavandera JL, Elguero J (1996) Biol Pharm Bull 19:1417–1422

    PubMed  CAS  Google Scholar 

  14. Broomhead JA, Camm G, Sterns M, Webster L (1998) Inorg Chim Acta 271:151–159

    Article  CAS  Google Scholar 

  15. Pettinari C, Pettinari R (2005) Coord Chem Rev 249:525–543

    CAS  Google Scholar 

  16. Hammes BS, Carrano CJ (2000) Chem Commun 17:1635–1636

    Article  Google Scholar 

  17. Beck A, Weibert B, Burzlaff N (2001) Eur J Inorg Chem 2:521–527

    Article  Google Scholar 

  18. Higgs TC, Carrano CJ (1997) Inorg Chem 36:291–297

    Article  CAS  Google Scholar 

  19. Higgs TC, Carrano CJ (1997) Inorg Chem 36:298–306

    Article  CAS  Google Scholar 

  20. Higgs TC, Ji D, Czernuscewicz RS, Carrano CJ (1998) Inorg Chim Acta 273:14–23

    Article  CAS  Google Scholar 

  21. Reedijk J, Verbiest J (1979) Transition Met Chem 4:239–243

    Article  CAS  Google Scholar 

  22. Mesubi MA, Anumba FO (1985) Transition Met Chem 10:5–8

    Article  CAS  Google Scholar 

  23. Potapov AS, Khlebnikov AI (2003) Izv Vuzov Ser Khim Khim Tekhnol 7:66–71

    Google Scholar 

  24. Patel RN, Singh N, Shukla KK, Gundla VL, Chauhan UK (2005) J Inorg Biochem 99:651–663

    Article  PubMed  CAS  Google Scholar 

  25. Hypercube (2002) HyperChem computational chemistry: molecular visualization and simulation, release 7 for Windows. Hypercube, Edmonton

  26. Huguet AI, Manez S, Alcaraz MJ (1990) Z Naturforsch 45:19–24

    CAS  Google Scholar 

  27. Bielski BHJ, Richter HW (1977) J Am Chem Soc 99:3019–3023

    Article  CAS  Google Scholar 

  28. Durot S, Policar C, Cisnetti F, Lambert F, Renault JP, Pelosi G, Blain G, Korri-Youssoufi H, Mahy JP (2005) Eur J Inorg Chem 17:3513–3523

    Article  CAS  Google Scholar 

  29. Bindoli A, Valente M, Cavallini L (1985) Pharmacol Res Commun 17:831–839

    Article  PubMed  CAS  Google Scholar 

  30. Korotkova EI, Karbainov YA, Avramchik OA (2003) Anal Bioanal Chem 375:465–468

    PubMed  CAS  Google Scholar 

  31. Imada I, Sato EF, Miyamoto M, Ichimori Y, Minamiyama Y, Konaka R, Inoue M (1999) Anal Biochem 271:53–58

    Article  PubMed  CAS  Google Scholar 

  32. Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C (2003) Arthritis Rheum 48:3151–3158

    Article  PubMed  CAS  Google Scholar 

  33. Bohle DS, Glassbrenner PA, Hansert B (1996) Methods Enzymol 269:302–311

    PubMed  CAS  Google Scholar 

  34. Glebska J, Koppenol WH (2003) Free Radic Biol Med 35:676–682

    Article  PubMed  CAS  Google Scholar 

  35. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) J Immunol Methods 160:81–88

    Article  PubMed  CAS  Google Scholar 

  36. Julia S, Sala P, Delmazo J, Sancho M, Ochoa C, Elguero J, Fayet JP, Vertut MC (1982) J Heterocycl Chem 19:1141–1145

    Article  CAS  Google Scholar 

  37. Claramunt RM, Hernandez H, Elguero J, Julia S (1983) Bull Soc Chim Fr 1–2:5–10

    Google Scholar 

  38. Tretyakov EV, Vasilevsky SF (1995) Mendeleev Commun 6:233–234

    Article  Google Scholar 

  39. Nakamoto K (1986) Infrared spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  40. Lever ABP (1984) Inorganic electronic spectra. Elsevier, Amsterdam

    Google Scholar 

  41. Zhang L-Z, Ma SL, Shen A-Y, Fu M, Zhang L-J, Liu X (2003) Pol J Chem 77:837–844

    CAS  Google Scholar 

  42. Li D, Li S, Yang D, Yu J, Huang J, Li Y, Tang W (2003) Inorg Chem 42:6071–6080

    Article  PubMed  CAS  Google Scholar 

  43. Bertini I, Gatteschi D, Scozzafava A (1979) Coord Chem Rev 29:67–84

    Article  CAS  Google Scholar 

  44. Schuitema AM, Engelen M, Koval IA, Gorter S, Driessen WL, Reedijk J (2001) Inorg Chim Acta 324:57–64

    Article  CAS  Google Scholar 

  45. Jitsukawa K, Harata M, Arii H, Sakurai H, Masuda H (2001) Inorg Chim Acta 324:108–116

    Article  CAS  Google Scholar 

  46. Filimonov VD, Karbainov YA, Korotkova EI, Bashkatova NV, Volovodenko AV (2002) Izv Vuzov Ser Khim Khim Tekhnol 3:75–79

    Google Scholar 

  47. Thomas CE, Ohlweiler DF, Carr AA, Nieduzak TR, Hay DA, Adams G, Vaz R, Bernotas RC (1996) J Biol Chem 271:3097–3104

    Article  PubMed  CAS  Google Scholar 

  48. Policar C, Durot S, Lambert F, Cesario M, Ramiandrasoa F, Morgenstern-Badarau I (2001) Eur J Inorg Chem 7:1807–1818

    Article  Google Scholar 

  49. Weser U, Schubotz LM (1981) J Mol Catal 13:249–261

    Article  CAS  Google Scholar 

  50. Korytowski W, Sarna T (1990) J Biol Chem 265:12410–12416

    PubMed  CAS  Google Scholar 

  51. Jezowska-Bojczuk M, Lesniak W, Bal W, Kozlowski H, Gatner K, Jezierski A, Sobczak J, Mangani S, Meyer-Klaucke W (2001) Chem Res Toxicol 14:1353–1362

    Article  PubMed  CAS  Google Scholar 

  52. Salem IA, El-Sheikh MY, Younes AAA, Zaki AB (2000) Int J Chem Kinet 32:667–675

    Article  CAS  Google Scholar 

  53. Ueda J, Takai M, Shimazu Y, Ozawa T (1998) Arch Biochem Biophys 357:231–239

    Article  PubMed  CAS  Google Scholar 

  54. Yim MB, Chock PB, Stadtman ER (1990) Proc Natl Acad Sci USA 87:5006–5010

    Article  PubMed  CAS  Google Scholar 

  55. Li ZP, Fan SS, Zhang LN, Wang FC (2004) Anal Sci 20:1327–1331

    Article  PubMed  CAS  Google Scholar 

  56. Tsukagoshi K, Sumiyama M, Nakajima R, Nakayama M, Maeda M (1998) Anal Sci 14:409–412

    Article  CAS  Google Scholar 

  57. Hodgson EK, Fridovich I (1975) Biochemistry 14:5294–5299

    Article  PubMed  CAS  Google Scholar 

  58. Kladna A, boul-Enein HY, Kruk I (2003) Free Radic Biol Med 34:1544–1554

    Article  PubMed  CAS  Google Scholar 

  59. Sohn HY, Gloe T, Keller M, Schoenafinger K, Pohl U (1999) J Vasc Res 36:456–464

    Article  PubMed  CAS  Google Scholar 

  60. Beckman JS, Koppenol WH (1996) Am J Physiol Cell Physiol 271:C1424–C1437

    CAS  Google Scholar 

  61. Hughes MN, Nicklin HG, Sackrule WA (1971) J Am Chem Soc 3722–3725

  62. AlAjlouni AM, Gould ES (1997) Inorg Chem 36:362–365

    Article  CAS  Google Scholar 

  63. Babich OA, Gould ES (2002) Res Chem Intermed 28:79–85

    Article  CAS  Google Scholar 

  64. Jourd’heuil D, Jourd’heuil FL, Kutchukian PS, Musah RA, Wink DA, Grisham MB (2001) J Biol Chem 276:28799–28805

    Article  PubMed  CAS  Google Scholar 

  65. Wrona M, Patel K, Wardman P (2005) Free Radic Biol Med 38:262–270

    Article  PubMed  CAS  Google Scholar 

  66. Crow JP (1999) Arch Biochem Biophys 371:41–52

    Article  PubMed  CAS  Google Scholar 

  67. Carreras MC, Pargament GA, Catz SD, Poderoso JJ, Boveris A (1994) FEBS Lett 341:65–68

    Article  PubMed  CAS  Google Scholar 

  68. Fattman CL, Schaefer LM, Oury TD (2003) Free Radic Biol Med 35:236–256

    Article  PubMed  CAS  Google Scholar 

  69. Wada K, Fujibayashi Y, Yokoyama A (1994) Arch Biochem Biophys 310:1–5

    Article  PubMed  CAS  Google Scholar 

  70. Lojek A, Kubala L, Cizova H, Ciz M (2002) Luminescence 17:1–4

    Article  PubMed  Google Scholar 

  71. Granfeldt D, Dahlgren C (2001) Inflammation 25:165–169

    Article  PubMed  CAS  Google Scholar 

  72. Bassoe CF, Li NY, Ragheb K, Lawler G, Sturgis J, Robinson JP (2003) Cytometry 51B:21–29

    Article  Google Scholar 

  73. Riber U, Lind P (1999) Vet Immunol Immunopathol 67:259–270

    Article  PubMed  CAS  Google Scholar 

  74. Czapski G, Goldstein S (1990) Adv Exp Med Biol 264:45–50

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mark Munro and Valentin Grachev, Department of Physics, Montana State University, Bozeman, MT, USA, for help with EPR measurements and EPR spectra analysis, respectively. This work was supported in part by Department of Defense grant W9113M-04-1-0001, NIH grants AR42426 and RR020185, and the Montana State University Agricultural Experimental Station. The US Army Space and Missile Defense Command, 64 Thomas Drive, Frederick, MD 21702, USA, is the awarding and administering acquisition office. The content of this report does not necessarily reflect the position or policy of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Quinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schepetkin, I., Potapov, A., Khlebnikov, A. et al. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes. J Biol Inorg Chem 11, 499–513 (2006). https://doi.org/10.1007/s00775-006-0101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0101-1

Keywords

Navigation