Skip to main content
Log in

Bioactives of Microbes Isolated from Western Ghat Belt of Kerala Show β-Lactamase Inhibition along with Wide Spectrum Antimicrobial Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study describes the exploitation of microbial biodiversity from Western Ghats of Kerala for screening of bioactives having β-lactamase inhibitory activities. A total of 700 pure cultures were isolated and were screened for antibacterial activity against a β-lactam resistant Bacillus cereus strain (PL 10) isolated from the same niche. Bioactive extracts made from 45 isolates showed inhibitory activities against PL 10, of which two strains showed inhibition of extended spectrum β-lactamase (ESBL) producing Klebsiella ESBL1101 and three strains inhibited methicillin-resistant Staphylococcus aureus (MRSA) strain MRSA831. All these five strains showed wide spectrum antimicrobial activity against various fungi and bacteria. These five cultures were identified by 16S rRNA sequencing and biochemical tests and the preliminary characterizations of their bioactive extracts were carried out. This study suggests the potential of bioactives from two inhibitor–producer strains, NII 167 and NII 1054, for being developed as inhibitors against wide spectrum β-lactam resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baltz, R. H. (2007). Antimicrobials from actinomycetes: back to the future. Microbe, 2, 125–131.

    Google Scholar 

  2. Chaudhary, U., & Aggarwal, R. (2004). Extended spectrum β-lactamases (ESBL)—an emerging threat to clinical therapeutics. Indian Journal of Medical Microbiology, 22, 75–80.

    CAS  Google Scholar 

  3. Sirot, D. (1995). Extended spectrum plasmid mediated β-lactamases. Journal of Antimicrobial Chemotherapy, 36, 19–34.

    CAS  Google Scholar 

  4. Reading, C., & Cole, M. (1977). Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy, 11, 852–857.

    Article  CAS  Google Scholar 

  5. English, A. R., Retsema, J. A., Girard, A. E., Lynch, J. E., & Barth, W. E. (1978). CP-45,899 a β-lactamase inhibitor that extends the antibacterial spectrum of β-lactams: initial bacteriological characterization. Antimicrobial Agents and Chemotherapy, 14, 414–419.

    Article  CAS  Google Scholar 

  6. Fisher, J., Belasco, J. G., Charnas, R. L., Khosla, S., & Knowles, J. R. (1980). β-Lactamase inactivation by mechanism-based reagents. Philosophical Transactions of the Royal Society B: Biological Sciences, 289, 309–319.

    Article  CAS  Google Scholar 

  7. Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23, 160–201.

    Article  CAS  Google Scholar 

  8. Bassetti, M., Righi, E., & Viscoli, C. (2008). Novel β-lactam antibiotics and inhibitor combinations. Expert Opinion on Investigational Drugs, 17, 285–296.

    Article  CAS  Google Scholar 

  9. Thomson, J. M., Distler, A. M., & Bonomo, R. A. (2007). Overcoming resistance to β-lactamase inhibitors: comparing sulbactam to novel inhibitors against clavulanate resistant SHV enzymes with substitutions at Ambler position 244. Biochemistry, 46, 11361–11368.

    Article  CAS  Google Scholar 

  10. Ceylan, O., Okmen, G., & Ugur, A. (2008). Isolation of soil Streptomyces as source antibiotics active against antibiotic-resistant bacteria. EurAsian Journal of BioSciences, 2, 73–82.

    Google Scholar 

  11. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.

    Article  CAS  Google Scholar 

  12. He, L., Chen, W., & Liu, Y. (2006). Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12. Research in Microbiology, 161, 321–326.

    Article  CAS  Google Scholar 

  13. Lisboa, M. P., Bonatto, D., Bizani, D., Henriques, J. A., & Brandelli, A. (2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. International Microbiology, 9, 111–118.

    CAS  Google Scholar 

  14. Sharma, N., Kapoor, G., & Neopaney, B. (2006). Characterization of a new bacteriocin produced from a novel isolated strain of Bacillus lentus NG121. Antoine Van Leeuwenhoek, 89, 337–343.

    Article  CAS  Google Scholar 

  15. Kumar, N., Singh, R. K., Mishra, S. K., Singh, A. K., & Pachouri, U. C. (2010). Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. International Journal of Microbiology Research, 2, 12–16.

    Google Scholar 

  16. Prabavathy, V. R., Mathivanan, N., & Murugesan, K. (2006). Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biological Control, 39, 313–319.

    Article  CAS  Google Scholar 

  17. Singh, J. S., Singh, S. P., Saxena, A. K., & Rawat, Y. S. (1984). India’s silent valley and its threatened rainforest ecosystems. Environmental Conservation, 11, 223–233.

    Article  Google Scholar 

  18. Dancer, S. J. (2004). How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy. The Lancet Infectious Diseases, 4, 611–619.

    Article  CAS  Google Scholar 

  19. Singh, S. K., Patel, A. K., Ahmed, S. U., Nampoothiri, K. M., & Pandey, A. (2007). Identification and phylogenetic analysis of TEM gene from soil isolates. Journal of Scientific and Industrial Research, 66, 660–666.

    CAS  Google Scholar 

  20. Novick, R. P. (1962). Microiodometric assay of penicillinase. Biochemical Journal, 83, 236–240.

    CAS  Google Scholar 

  21. Nampoothiri, K. M., Rubex, R., Patel, A. K., Narayanan, S. S., Krishna, S., Das, S. M., & Pandey, A. (2008). Molecular cloning, overexpression and biochemical characterization of hypothetical β-lactamases of Mycobacterium tuberculosis H37Rv. Journal of Applied Microbiology, 105, 59–67.

    Article  CAS  Google Scholar 

  22. Perez, C., Pauli, M., & Bazevque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae et Medicine Experimentalis, 15, 113–115.

    Google Scholar 

  23. Kutchma, A. J., Roberts, M. A., Knaebel, D. B., & Crawford, D. L. (1998). Small-scale isolation of genomic DNA from Streptomyces mycelia or spores. Biotechniques, 24, 452–456.

    CAS  Google Scholar 

  24. Pandey, B., Ghimire, P., & Agrawal, V. P. (2004). Studies on the antibacterial activity of actinomycetes isolated from the Khumbu region of Mt. Everest. A paper presented in the International Conference on the Great Himalayas: Climate, Health, Ecology, Management and Conservation, Kathmandu. January 12–15. Organized by Kathmandu University and the Aquatic Ecosystem Health and Management Society, Canada.

  25. Kumar, A., Saini, P., & Shrivastava, J. N. (2009). Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian Journal of Experimental Biology, 47, 57–62.

    Google Scholar 

  26. Motta, S. A., Cannavan, S. F., Tsai, S.-M., & Brandelli, A. (2007). Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Archives of Microbiology, 188, 367–375.

    Article  CAS  Google Scholar 

  27. Sutyak, K. E., Wirawan, R. E., Aroutcheva, A. A., & Chikindas, M. L. (2008). Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 104, 1067–1074.

    Article  CAS  Google Scholar 

  28. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of Gram positive bacteria. Microbiological Reviews, 59, 171–200.

    CAS  Google Scholar 

  29. Korenblum, E., von der Weid, I., Santos, A. L. S., Rasado, A. S., Sebastian, G. V., Coutinho, C. M. L. M., Magalhaes, F. C. M., de Paiva, M. M., & Seldin, L. (2005). Production of antimicrobial substances by Bacillus subtilis LFE1, B. firmus H2O-1 and B. licheniformis T6-5, isolated from an oil reservoir in Brazil. Journal of Applied Microbiology, 98, 667–675.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by CSIR, New Delhi under the Task force programme, NWP 006. The permission from Forest Department, Kerala State, India for allowing soil sample collection from Silent Valley National Park is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavan Madhavan Nampoothiri.

Additional information

Sowmya P. Mohandas, Sita Ravikumar, Sumi J Menachery, Gayathri Suseelan contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohandas, S.P., Ravikumar, S., Menachery, S.J. et al. Bioactives of Microbes Isolated from Western Ghat Belt of Kerala Show β-Lactamase Inhibition along with Wide Spectrum Antimicrobial Activity. Appl Biochem Biotechnol 167, 1753–1762 (2012). https://doi.org/10.1007/s12010-012-9596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9596-9

Keywords

Navigation