Skip to main content

Advertisement

Log in

An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Residue of chili plants left in the field after harvesting is a major lignocellulosic resource that is underexploited. India has over 0.6 million tons of this residue available as surplus annually which projects it as a potent feedstock for conversion to bioethanol. The cellulose, hemicellulose and lignin content of the chili residues are subject to variations with type of cultivar, geographical region and the season of cultivation, and the composition is critical in developing strategies for its conversion to bioalcohol(s). As with any lignocellulosic biomass, this feedstock needs pretreatment to make it more susceptible to hydrolysis by enzymes which is the most efficient method for generating sugars which can, then, be fermented to alcohol. Pretreatment of chili postharvest residue (CPHR) is, therefore, important though very little study has addressed this challenge. Similarly, enzymatic saccharification of pretreated chili biomass is another area which needs dedicated R&D because the combination of enzyme preparations and the conditions for saccharification are different in different biomass types. The present study was undertaken to develop an optimal process for pretreatment and enzymatic saccharification of CPHR that will yield high amount of free sugars. Dilute acid and alkali pretreatment of the biomass was studied at high temperatures (120–180 °C), with mixing (50–200 rpm) in a high pressure reactor. The holding time was adjusted between 15 and 60 min, and the resultant biomass was evaluated for its susceptibility to enzymatic hydrolysis. Similarly, the conditions for hydrolysis including biomass and enzyme loadings, mixing and incubation time were studied using a Taguchi method of experimentation and were optimized to obtain maximal yield of sugars. Efficiency of pretreatment was gauged by observing the changes in composition and the physicochemical properties of native and pretreated biomass which were analyzed by SEM and XRD analyses. The studies are expected to provide insights into the intricacies of biomass conversion leading to better processes that are simpler and more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  2. Production & marketing of chillies. Market Survey. March 2009. Available from: www.efymag.com

  3. Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., Rajasree, K. P., & Pandey, A. (2010). Bioresource Technology, 101, 4826–4833.

    Article  CAS  Google Scholar 

  4. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biotechnology Advances. Article in press

  5. Zheng, Y., Zhongli, P., & Zhang, R. (2009). International Journal of Agricultural & Biological Engineering, 2(3), 51–68.

    CAS  Google Scholar 

  6. Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Bioresource Technology, 99, 1869–1876.

    Article  CAS  Google Scholar 

  7. Zhu, J. Y., & Pan, X. J. (2010). Bioresource Technology, 101, 4992–5002.

    Article  CAS  Google Scholar 

  8. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., et al. (2008). NREL Technical Report, NREL/TP-510-42618.

  9. Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). Journal of Textile Research, 29, 786–794.

    Article  CAS  Google Scholar 

  10. Zhou, D., Zhang, L., & Guo, S. (2005). Water Research, 39, 3755–3762.

    Article  CAS  Google Scholar 

  11. Focher, B., Palma, M., Canetti, T., Torri, M., Cosentino, G. C., & Gastaldi, G. (2001). Industrial Crops and Products, 13, 193–208.

    Article  CAS  Google Scholar 

  12. Miller, G. M. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  13. Binod, P., Kuttiraja, M., Archana, M., Janu, K. U., Sindhu, R., Sukumaran, R. K., & Pandey, A. (2012). Fuel, 92, 340–345.

    Article  CAS  Google Scholar 

  14. Sindhu, R., Binod, P., Nagalakshmi, S., Janu, K. U., Sajna, K. V., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Applied Biochemistry and Biotechnology, 162, 2313–2323.

    Article  CAS  Google Scholar 

  15. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioresource Technology, 102, 10915–10921.

    Article  CAS  Google Scholar 

  16. Leenakul, W., & Tippayawong, N. (2010). Journal of Sustainable Energy & Environment, 1, 117–120.

    Google Scholar 

  17. Harmsen, P. F. H., Huijgen, W. J. J., Lopez, B. L. M., & Bakker, R. R. C. (2010). Biosynergy, Report 1184.

  18. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Bioscience, Biotechnology, and Biochemistry, 72(3), 805–810.

    Article  CAS  Google Scholar 

  19. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  20. Guo, G. L., Hsu, D. C., Chen, W. H., Chen, W. H., & Hwang, W. S. (2009). Enzyme and Microbial Technology, 45, 80–87.

    Article  CAS  Google Scholar 

  21. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  22. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  23. Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., & Pandey, A. (2012). Renewable Energy, 37, 109-116. in press

    Google Scholar 

  24. Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Journal of Scientific and Industrial Research, 70, 156–161.

    CAS  Google Scholar 

  25. Zhang, J., Ma, X., Yu, J., Zhang, X., & Tan, T. (2011). Bioresource Technology, 102, 4585–4589.

    Article  CAS  Google Scholar 

  26. Zhu, L. (2005). Ph.D Thesis. Beijing University of Chemical Technology, China.

Download references

Acknowledgments

The authors are grateful to the Technology Information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, Government of India and Council of Scientific and Industrial Research (CSIR), New Delhi for financial support to the Centre for Biofuels at NIIST. The Authors would like to thank Dr. Sangiliyandi for providing us with Chili post harvest residues. The authors also thank staff of the Electron Microscopy section and the XRD facility of NIIST for SEM and XRD analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswaran Binod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preeti, V.E., Sandhya, S.V., Kuttiraja, M. et al. An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue. Appl Biochem Biotechnol 167, 1489–1500 (2012). https://doi.org/10.1007/s12010-012-9591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9591-1

Keywords

Navigation