Skip to main content
Log in

Tannase Production by Penicillium purpurogenum PAF6 in Solid State Fermentation of Tannin-Rich Plant Residues Following OVAT and RSM

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by ‘one variable at a time’ (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box–Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2007). Journal of Applied Microbiology, 102, 1462–1467.

    Article  Google Scholar 

  2. Lekha, P. K., & Lonsane, B. K. (1997). Advances in Applied Microbiology, 44, 215–260.

    Article  CAS  Google Scholar 

  3. Chandini, S. K., Jaganmohan, R. L., Gowthaman, M. K., Haware, D. J., & Subramanian, R. (2011). Food Chemistry, 127, 1039–1045.

    Article  CAS  Google Scholar 

  4. Selwal, M. K., Yadav, A., Selwal, K. K., Aggarwal, N. K., Gupta, R., & Gautam, S. K. (2011). Brazilian Journal of Microbiology, 42, 374–387.

    Article  CAS  Google Scholar 

  5. Aguilar, C. N., & Sanchez, G. (2001). Food Science and Technology International, 7, 373–382.

    CAS  Google Scholar 

  6. Lekha, P. K., & Lonsane, B. K. (1994). Process Biochemistry, 29, 497–503.

    Article  CAS  Google Scholar 

  7. Archambault, J., Lacki, K., & Duvnjak, Z. (1996). Biotechnology Letters, 18, 771–774.

    Article  CAS  Google Scholar 

  8. Muir, R. M., Ibanez, A. M., Uratsu, S. L., Ingham, E. S., Leslie, C. A., McGranahan, G. H., Batra, N., Goyal, S., Joseph, J., Jemmis, E. D., & Dandekar, A. M. (2011). Plant Molecular Biology. doi:10.1007/s11103-011-9739-3.

  9. Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Polish Journal of Microbiology, 55, 297–301.

    CAS  Google Scholar 

  10. Hadi, T. A., Banerjee, R., & Bhattacharya, B. C. (1994). Bioprocess Engineering, 11, 239–243.

    Article  CAS  Google Scholar 

  11. Rodrigues, T. H. S., Pinto, G. A. S., & Gonçalves, L. R. B. (2008). Biotechnology and Bioprocess Engineering, 13, 571–576.

    Article  CAS  Google Scholar 

  12. Lokeswari, N. (2010). Rasayan Journal of Chemistry, 3, 32–37.

    CAS  Google Scholar 

  13. Arulpandi, I., Sangeetha, R., & Kalaichelvan, P. T. (2010). Zaffius Biotechnology, 3, 1–7.

    Google Scholar 

  14. Srivastava, A., & Kar, R. (2009). Brazilian Journal of Microbiology, 40, 782–789.

    Article  CAS  Google Scholar 

  15. Hota, S. K., Dutta, J. R., & Banerjee, R. (2007). Indian Journal of Biotechnology, 6, 200–204.

    CAS  Google Scholar 

  16. Saxena, S., & Saxena, R. K. (2004). Biotechnology and Applied Biochemistry, 39, 99–106.

    Article  CAS  Google Scholar 

  17. Selwal, M. K., Yadav, A., Aggarwal, N. K., Kumar, K., & Kumar, A. (2008). World Journal of Microbiology and Biotechnology, 24, 3023–3030.

    Article  Google Scholar 

  18. Mukherjee, G., & Banerjee, R. (2006). World Journal of Microbiology and Biotechnology, 22, 207–212.

    Article  CAS  Google Scholar 

  19. Mahapatra, K., Nanda, R. K., Bag, S. S., Banerjee, R., Pandey, A., & Szakacs, G. (2005). Process Biochemistry, 40, 3251–3254.

    Article  CAS  Google Scholar 

  20. Panda, B. P., Mazumdar, R., & Banerjee, R. (2009). Journal of Pharmacy and BioAllied Sciences, 1, 37–42.

    Article  Google Scholar 

  21. Selwal, M. K., & Selwal, K. K. (2011). Annals of Microbiology. doi:10.1007/s13213-011-0238-1.

  22. Lokeswari, N., & Reddy, D. S. R. (2010). Pharmacophore, 1, 112–122.

    Google Scholar 

  23. Sherief, A. A., EL-Tanash, A. B., & Nour, A. (2011). Biotechnology. doi:10.3923/biotech.2011.

  24. Yee, T. W., Prabhu, N. G., Jain, K., & Ibrahim, D. (2011). African Journal of Biotechnology, 10, 13147–13154.

    CAS  Google Scholar 

  25. Ordonez, R. M., Colombo, I., Alberto, M. R., & Isla, M. I. (2011). World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-011-0699-1.

  26. Nutan, D., Ulka, S. P., Kulbhusan, B. B., Jayant, M. K., & Digamber, V. G. (2002). Process Biochemistry, 38, 715–721.

    Article  Google Scholar 

  27. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experiments: An introduction to design, data analysis, and model building. New York: Wiley.

    Google Scholar 

  28. Haaland, P. D. (1989). Statistical problem solving in experimental design in biotechnology. New York: Marcel Dekker.

    Google Scholar 

  29. Schanderi, S. H. (1970). Methods in food analysis. New York: Academic Press.

    Google Scholar 

  30. Mondal, K. C., Banerjee, D., Jana, M., & Pati, B. R. (2001). Analytical Biochemistry, 295, 168–171.

    Article  CAS  Google Scholar 

  31. Kar, B., Banerjee, R., & Bhattacharyya, B. C. (1999). Journal of Industrial Microbiology and Biotechnology, 23, 173–177.

    Article  CAS  Google Scholar 

  32. Kumar, R. A., Gunasekaran, P., & Lakshmanan, M. (1999). Journal of Basic Microbiology, 39, 161–168.

    Article  CAS  Google Scholar 

  33. Holker, U., Hofer, M., & Lenz, J. (2004). Applied Microbiology and Biotechnology, 64, 175–186.

    Article  CAS  Google Scholar 

  34. Sabu, A., Pandey, A., Daud, M. J., & Szakacs, G. (2005). Bioresource Technology, 96, 1223–1228.

    Article  CAS  Google Scholar 

  35. Raimbault, M., & Alazardd, D. (1980). European Journal of Applied Microbiology and Biotechnology, 9, 199–209.

    Article  CAS  Google Scholar 

  36. Ahmed, W. B., Haq, I., & Iqbal, J. (2002). Biosynthesis of xylanase by UV-treated mutant strain of Aspergillus niger GCBMX-45. Biotechnology, 1, 10–14.

    Article  Google Scholar 

  37. Rajasimman, M., & Subathra, S. (2010). International Journal of Chemistry and Biomolecular Engineering, 3, 1–7.

    Google Scholar 

  38. Sharma, S., Agarwal, L., & Saxena, R. K. (2007). Indian Journal of Microbiology, 47, 132–138.

    Article  CAS  Google Scholar 

  39. Naidu, R. B., Saisubramanian, N., Sivasubramanian, S., Selvakumar, D., Janardhanan, S., & Puvanakrishnan, R. (2008). Current Trends in Biotechnology and Pharmacy, 2, 523–530.

    CAS  Google Scholar 

  40. Das Mohapatra, P. K., Maity, C., Rao, R. S., Pati, B. R., & Mondal, K. C. (2009). Food Research International, 42, 430–435.

    Article  CAS  Google Scholar 

  41. Sivashanmugam, K., & Jayaraman, G. (2011). African Journal of Microbiology Research, 5, 3611–3615.

    Google Scholar 

  42. Batra, A., & Saxena, R. K. (2005). Process Biochemistry, 40, 1553–1557.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support offered by the University Grant Commission, New Delhi, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Das Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, A., Maity, C., Halder, S.K. et al. Tannase Production by Penicillium purpurogenum PAF6 in Solid State Fermentation of Tannin-Rich Plant Residues Following OVAT and RSM. Appl Biochem Biotechnol 167, 1254–1269 (2012). https://doi.org/10.1007/s12010-012-9547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9547-5

Keywords

Navigation