Skip to main content
Log in

High-Level Expression, Purification and Production of the Fungal Immunomodulatory Protein-Gts in Baculovirus-Infected Insect Larva

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fip-gts, a fungal immunomodulatory protein (Fip) isolated from Ganoderma tsugae (gts), has been reported to possess therapeutic effects in the treatment of cancer and autoimmune disease. To cost-effectively produce Fip-gts and bypass the bottleneck involved in its time-consuming purification from G. tsugae, in this study, we incorporated the SPbbx secretion signal into recombinant baculovirus for expressing glycosylated and bioactive rFip-gts in baculovirus-infected insect cells and Trichoplusia ni larva. This is the first study to employ the aerosol infecting T. ni larva with recombinant baculovirus for economical and high-level production of foreign proteins. In this study, one purification could yield 10 mg of rFip-gts protein merely from ∼100 infected T. ni larvae by aerosol inoculation, corresponding to 5 L (5 × 109 cells) of the infected Sf21 culture. In addition, the rFip-gts purified from T. ni larvae could induce the expression of interleukin-2 in murine splenocytes with an immunoresponsive level similar to that induced by LZ-8 (a known potent immunomodulatory protein purified from Ling zhi, Ganoderma lucidum). Thus, our results demonstrated that the larva-based baculovirus expression system can successfully express rFip-gts with the assembling capability required for maintaining immunomodulatory and anticancer activity. Our approach will open a new avenue for the production of rFip-gts and facilitate the immunoregulatory activity of rFip-gts available in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., et al. (1989). Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. Journal of Biological Chemistry, 264, 472–478.

    CAS  Google Scholar 

  2. Ko, J. L., Hsu, C. I., Lin, R. H., Kao, C. L., & Lin, J. Y. (1995). A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom Flammulina velutipes and its complete amino acid sequence. European Journal of Biochemistry, 228, 244–249.

    Article  CAS  Google Scholar 

  3. Hsu, H. C., Hsu, C. I., Lin, R. H., Kao, C. L., & Lin, J. Y. (1997). Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochemical Journal, 323, 557–565.

    CAS  Google Scholar 

  4. Sheu, F., Chien, O. J., Hsieh, K. Y., Chin, K. L., Huang, W. T., Tsao, C. Y., et al. (2009). Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-kB activation and M1 polarization within murine macrophages. Journal of Agricultural and Food Chemistry, 57, 4130–4141.

    Article  CAS  Google Scholar 

  5. Lin, W. H., Hung, C. H., Hsu, C. I., & Lin, J. Y. (1997). Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. Journal of Biological Chemistry, 272, 20044–20048.

    Article  CAS  Google Scholar 

  6. Chu, C. L., Chen, D. Z. C., & Lin, C. C. (2011). A novel adjuvant Ling zhi-8 for cancer DNA vaccines. Human Vaccines, 7, 1161–1164.

    Article  CAS  Google Scholar 

  7. Wu, C. T., Lin, T. Y., Hsu, H. Y., Sheu, F., Ho, C. M., & Chen, E. I. (2011). Ling zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 32, 1890–1896.

    Article  CAS  Google Scholar 

  8. Lin, C. C., Yu, Y. L., Shih, C. C., Liu, K. L., Hong, L. Z., Chen, J. D., et al. (2011). A novel adjuvant Ling zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunology, Immunotherapy, 60, 1019–1027.

    Article  CAS  Google Scholar 

  9. Yeh, C. H., Chen, H. C., Yang, J. J., Chuang, W. I., & Sheu, F. (2010). Polysaccharides PS-G and protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. Journal of Agricultural and Food Chemistry, 58, 8535–8544.

    Article  CAS  Google Scholar 

  10. Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., et al. (1997). The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal of Cancer, 70, 699–705.

    Article  CAS  Google Scholar 

  11. Tanaka, S., Ko, K., Kino, K., Tsuchiya, K., Yamashita, A., Murasugi, A., et al. (1989). Complete amino acid sequence of an immunomodulatory protein, Ling zhi-8 (LZ-8). Journal of Biological Chemistry, 264, 16372–16377.

    CAS  Google Scholar 

  12. Lai, N. S., Lin, R. H., Lai, R. S., Kun, U. C., & Leu, S. C. (2001). Prevention of autoantibody formation and prolonged survival in New Zealand Black/New Zealand white F1 mice with an ancient Chinese herb, Ganoderma tsugae. Lupus, 10, 461–465.

    Article  CAS  Google Scholar 

  13. Hsu, H. Y., Hua, K. F., Wu, W. C., Hsu, J., Weng, S. T., Lin, T. L., et al. (2008). Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. Journal of Cellular Physiology, 215, 15–26.

    Article  CAS  Google Scholar 

  14. Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances, 29, 667–674.

    Article  CAS  Google Scholar 

  15. Jeurink, P. V., Noguera, C. L., Savelkoul, H. F. J., & Wichers, H. J. (2008). Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells. International Immunopharmacology, 8, 1124–1133.

    Article  CAS  Google Scholar 

  16. Wang, P. H., Yang, S. F., Chen, G. D., Han, C. P., Chen, S. C., Lin, L. Y., et al. (2009). Human nonmetastatic clone 23 type 1 gene suppresses migration of cervical cancer cells and enhances the migration inhibition of fungal immunomodulatory protein from Ganoderma tsugae. Reproduction Science, 14, 475–485.

    Article  Google Scholar 

  17. Liao, C. H., Hsiao, Y. M., Lin, C. H., Yeh, C. S., Wang, J. C., Ni, C. H., et al. (2008). Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from Ganoderma tsugae. Food and Chemical Toxicology, 46, 1851–1859.

    Article  CAS  Google Scholar 

  18. Liao, C. H., Hsiao, Y. M., Hsu, C. P., Lin, M. Y., Wang, J. C., Huang, Y. L., et al. (2006). Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line. Molecular Carcinogensis, 45, 220–229.

    Article  CAS  Google Scholar 

  19. Dong, Y., & Shi, J. R. (2006). Application of primary culture technique to traditional Chinese medicine research. Zhong Xi Yi Jie He Xue Bao, 4, 90–93.

    Article  Google Scholar 

  20. Jinn, T. R., Wu, C. M., Tu, W. C., Ko, J. L., & Tzen, J. T. C. (2006). Functional expression of Fip-gts, a fungal immunomodulatory protein from Ganoderma tsugae in Sf21 insect cells. Bioscience, Biotechnology, and Biochemistry, 70, 2627–2634.

    Article  CAS  Google Scholar 

  21. Groner, A. (1986). Specificity and safety of baculoviruses. In R. R. Granados & B. A. Federici (Eds.), The biology of baculoviruses. Boca Raton: CRC.

    Google Scholar 

  22. Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology, 23, 567–575.

    Article  CAS  Google Scholar 

  23. Jarvis, D. L. (2003). Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology, 310, 1–7.

    Article  CAS  Google Scholar 

  24. Kulakosky, P. C., Hughes, P. R., & Wood, H. A. (1998). N-linked glycosylation of a baculovirus-expressed recombinant glycoprotein in insect larvae and tissue culture cells. Glycobiology, 8, 741–745.

    Article  CAS  Google Scholar 

  25. Perez-Filgueria, D. M., Resino-Talavan, P., Cubillos, C., Angulo, I., Barderas, M. G., Barvena, J., et al. (2007). Development of a low-cost, insect larvae-derived recombinant subunit vaccine against RHDV. Virology, 364, 422–430.

    Article  Google Scholar 

  26. Liu, Y., DeCarolis, N., & van Beek, N. (2007). Protein production with recombinant baculoviruses in lepidopteran larvae. Methods in Molecular Biology, 388, 267–280.

    Article  CAS  Google Scholar 

  27. Kondo, H., Ino, M., Suzuki, A., Ishizaki, H., & Iwami, M. (1996). Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. Journal of Molecular Biology, 259, 926–937.

    Article  CAS  Google Scholar 

  28. Wu, C. M., Wu, T. Y., Kao, S. S., Ko, T. L., & Jinn, T. R. (2008). Expression and purification of a recombinant Fip-fve protein from Flammulina velutipes in baculovirus-infected insect cells. Journal of Applied Microbiology, 104, 1354–1362.

    Article  CAS  Google Scholar 

  29. Jinn, T. R., Kao, S. S., Tseng, Y. C., Chen, Y. J., & Wu, T. Y. (2009). Aerosol infectivity of a baculovirus to Trichoplusia ni larvae: an alternative larval inoculation strategy for recombinant protein production. Biotechnology Progress, 25, 384–389.

    Article  CAS  Google Scholar 

  30. Vaughn, J. L., Goodwin, R. H., Tompkins, G. J., & McCawley, P. (1977). The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro, 13, 213–217.

    Article  CAS  Google Scholar 

  31. O’Reilly, D. R., Miller, L. K., & Luckow, V. A. (1992). Baculovirus expression vector: a laboratory manual. New York: W.H. Freeman and Company.

    Google Scholar 

  32. Hung, C. C., & Hwan, J. S. (1988). The mass rearing method of major insect pests: Asian corn borer, Ostrinia furnacalis, guava mealy bug, Planococcus minor and beet armyworm, Spodoptera exigua. Taiwan: Annual Report TACTRI.

    Google Scholar 

  33. Giraudo, C. L. C., Rumi, L., & Pasqualini, C. D. (1976). An improved method for PHA-culturing mouse lymphocytes using Ficoll-Hypaque gradient. Bollettino dell'Istituto Sieroterapico Milanese, 55, 304–307.

    Google Scholar 

  34. Wermerskirchen, A. S., LaTocha, D. H., & Clarke, B. L. (2000). Adrenocorticotropic hormone controls Concanavalin A activation of rat lymphocytes by modulating IL-2 production. Life Science, 67, 2177–2187.

    Article  CAS  Google Scholar 

  35. O’Connell, K. P., Kovaleva, E., Campbell, J. H., Anderson, P. E., Brown, S. G., Valdes, J. J., et al. (2007). Production of a recombinant antibody fragment in whole insect larvae. Molecular Biotechnology, 36, 44–51.

    Article  Google Scholar 

  36. Pham, M. Q., Naggie, S., Wier, M., Cha, H. J., & Bentley, W. E. (1999). Human interleukin-2 production in insect (Trichoplusia ni) larvae: effects and partial control of proteolysis. Biotechnology and Bioengineering, 62, 175–182.

    Article  CAS  Google Scholar 

  37. Medin, J. A., Hunt, L., Gathy, K., Evans, R. K., & Coleman, M. S. (1990). Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proceedings of the National Academy of Sciences, 87, 2760–2764.

    Article  CAS  Google Scholar 

  38. Haak-Frendscho, M., Kino, K., Sone, T., & Jardieu, P. (1993). Ling zhi-8: a novel T-cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunology, 150, 101–113.

    Article  Google Scholar 

  39. Lin, Y. L., Liang, Y. C., Tseng, Y. S., Huang, H. Y., Chou, S. Y., Hseu, R. S., et al. (2009). An immunomodulatory protein, Ling zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kB and MAPK pathways. Journal of Leukocyte Biology, 86, 877–889.

    Article  CAS  Google Scholar 

  40. Inngjerdingen, K. T., Kiyohara, H., Matsumoto, T., Petersen, D., Michaelsen, T. E., & Diallo, D. (2007). An immunomodulating pectic polymer from Glinus oppositifolius. Phytochemistry, 68, 1046–1058.

    Article  CAS  Google Scholar 

  41. Arkin, S., Naprstek, B., Guarini, L., Ferrone, S., & Lipton, J. M. (1991). Expression of intercellular adhesion molecule-1 (CD54) on hematopoietic progenitors. Blood, 77, 948–953.

    CAS  Google Scholar 

  42. Hubbard, A. K., & Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radical Biology & Medicine, 28, 1379–1386.

    Article  CAS  Google Scholar 

  43. Amaout, M. A., Mahalingam, B., & Xiong, J. P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual Review of Cell and Development Biology, 21, 381–405.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the China Medical University and National Science Council of the Republic of China for financially supporting this research under Contract No. CMU 97-199 and NSC-98-2324-B-039-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzyy-Rong Jinn.

Additional information

Tzong-Yuan Wu and Hsin-An Chen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, TY., Chen, HA., Li, FY. et al. High-Level Expression, Purification and Production of the Fungal Immunomodulatory Protein-Gts in Baculovirus-Infected Insect Larva. Appl Biochem Biotechnol 169, 976–989 (2013). https://doi.org/10.1007/s12010-012-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0049-2

Keywords

Navigation