Skip to main content
Log in

Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding an extracellular xylanase was cloned from a compost metagenomic library. The xylanase gene, xyn10J, was 1,137 bp in length and was predicted to encode a protein of 378 amino acid residues with a putative signal peptide of 27 amino acid residues. The molecular mass of the mature Xyn10J was calculated to be 39,882 Da with a pI of 6.09. Xyn10J had a motif GVKVHFTEMDI characteristic of most members of glycosyl hydrolase family 10. The amino acid sequence of Xyn10J showed 60.0% identity to that of XynH, a xylanase from an uncultured soil bacterium and 55% identity to XylC of Cellvibrio mixtus. Site-directed mutagenesis of the expected active site based on the sequence analysis indicated that an aspartic acid residue (Asp207), in addition to the identified catalytic residues Glu165 and Glu270, plays a crucial role for the catalytic activity. The purified Xyn10J had a mass of about 40 kDa and was optimally active at pH 7.0 and 40 °C. Xyn10J hydrolyzed beechwood xylan > birchwood xylan > oat spelt xylan > arabinoxylan. Xyn10J hydrolyzed xylotetraose and xylohexaose exclusively to xylobiose, xylopentaose, and xylotriose mainly to xylobiose with transglycosylation activity. The saccharification of reed (Phragmites communis) powder by commercial enzymes was significantly increased by the addition of a small amount of Xyn10J to the commercial preparation. Xyn10J is the first xylanase screened directly from a compost metagenomic library, and the enzyme has the potential to be used in the conversion of biomass to fermentable sugars for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Chemistry and Biology, 5, R245–R249.

    Article  CAS  Google Scholar 

  2. Brady, S. F., Chao, C. J., & Clardy, J. (2002). Journal of the American Chemical Society, 124, 9968–9969.

    Article  CAS  Google Scholar 

  3. Handelsman, J. (2004). Microbiology and Molecular Biology Reviews, 68, 669–685.

    Article  CAS  Google Scholar 

  4. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., et al. (2000). Applied and Environmental Microbiology, 66, 2541–2547.

    Article  CAS  Google Scholar 

  5. Cho, K. M., Lee, S. M., Math, R. K., Islam, S. M., Kambiranda, D. M., Kim, J. M., et al. (2008). Journal of Microbiology and Biotechnology, 18, 1874–1883.

    CAS  Google Scholar 

  6. Cho, K. M., Kwon, E. J., Kim, S. K., Kambiranda, D. M., Math, R. K., Lee, Y. H., et al. (2009). Journal of Microbiology and Biotechnology, 19, 743–748.

    Article  Google Scholar 

  7. Lee, Y. H., Kim, S. K., Kim, Y. H., Jeong, Y. S., Yun, M. G., Cho, J. J., et al. (2010). Journal of the Korean Society for Applied Biological Chemistry, 53, 230–236.

    Article  Google Scholar 

  8. Tiquia, S. M. (2002). Journal of Applied Microbiology, 92, 764–775.

    Article  CAS  Google Scholar 

  9. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  10. Balat, M., & Balat, H. (2009). Applied Energy, 86, 2273–2282.

    Article  CAS  Google Scholar 

  11. Bieley, P. (1999). Trends in Biotechnology, 3, 286–290.

    Article  Google Scholar 

  12. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  13. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  14. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  15. Kim, Y. H., Kwon, E. J., Kim, S. K., Jeong, Y. S., Kim, J., Yun, H. D., et al. (2010). Biochemical and Biophysical Research Communications, 393, 45–49.

    Article  CAS  Google Scholar 

  16. Lämmle, K., Zipper, H., Breuer, M., Hauer, B., Buta, C., Brunner, H., et al. (2007). Journal of Biotechnology, 127, 575–592.

    Article  Google Scholar 

  17. Pang, H., Zhang, P., Duan, C. J., Mo, X. C., Tang, J. L., & Feng, J. X. (2009). Current Microbiology, 58, 404–408.

    Article  CAS  Google Scholar 

  18. Feng, Y., Duan, C. J., Pang, H., Mo, X. C., Wu, C. F., Yu, Y., et al. (2007). Applied Microbiology and Biotechnology, 75, 319–328.

    Article  CAS  Google Scholar 

  19. Kim, S. J., Lee, C. M., Han, B. R., Kim, M. Y., Yeo, Y. S., Yoon, S. H., et al. (2008). FEMS Microbiology Letters, 282, 44–51.

    Article  CAS  Google Scholar 

  20. Voget, S., Steele, H. L., & Streit, W. R. (2006). Journal of Biotechnology, 126, 26–36.

    Article  CAS  Google Scholar 

  21. Hu, Y., Zhang, G., Li, A., Chen, J., & Ma, L. (2008). Applied Microbiology and Biotechnology, 80, 823–830.

    Article  CAS  Google Scholar 

  22. Kwon, E. J., Jeong, Y. S., Kim, Y. H., Kim, S. K., Na, H. B., Kim, J., et al. (2010). Journal of the Korean Society for Applied Biological Chemistry, 53, 702–708.

    Article  CAS  Google Scholar 

  23. Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). Applied and Environmental Microbiology, 62, 316–322.

    CAS  Google Scholar 

  24. Bendsten, J. D., Nielsen, H., Heijne, G., & Brunak, S. (2004). Journal of Molecular Biology, 340, 783–795.

    Article  Google Scholar 

  25. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., et al. (2008). Nucleic Acids Research, Database Issue, 36, D281–D288.

    Article  CAS  Google Scholar 

  26. Shin, E. S., Yang, M. J., Jung, K. H., Kwon, E. J., Jung, J. S., Park, S. K., et al. (2002). Applied and Environmental Microbiology, 68, 3496–3501.

    Article  CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  29. Fontes, C. M. G. A., Gilbert, H. J., Hazlewood, G. P., Clarke, J. H., Prates, J. A. M., McKie, V. A., et al. (2000). Microbiology, 146, 1959–1967.

    CAS  Google Scholar 

  30. Jiang, Z., Kobayashi, A., Ahsan, M. M., Lite, L., Kitaoka, M., & Hayashi, K. (2001). Journal of Bioscience and Bioengineering, 92, 423–428.

    CAS  Google Scholar 

  31. Jun, H. S., Ha, J. K., Malburg, L. M. J., Verrinder, G. A., & Forsberg, C. W. (2003). Canadian Journal of Microbiology, 49, 171–180.

    Article  CAS  Google Scholar 

  32. Fialho, M. B., & Carmona, E. C. (2004). Folia Microbiologica, 49, 13–18.

    Article  CAS  Google Scholar 

  33. Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., et al. (2004). Journal of Biotechnology, 114, 125–134.

    Article  CAS  Google Scholar 

  34. Watanabe, S., Viet, D. N., Kaneko, J., Kanio, Y., & Yoshida, S. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 951–958.

    Article  CAS  Google Scholar 

  35. Sun, J. Y., Liu, M. Q., & Weng, X. Y. (2009). Applied Biochemistry and Biotechnology, 152, 428–439.

    Article  CAS  Google Scholar 

  36. Zhang, M., Jiang, Z., Yang, S., Hua, C., & Li, L. (2010). Bioresource Technology, 10, 688–695.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Mid-Career Researcher Program through NRF grant funded by the MEST (No. R01-2008-000-20220-0 [2009-0083957]), by Sunchon National University Research Fund in 2010 and partially by the Cooperation Research Program (PJ007449201006), Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, Y.S., Na, H.B., Kim, S.K. et al. Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library. Appl Biochem Biotechnol 166, 1328–1339 (2012). https://doi.org/10.1007/s12010-011-9520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9520-8

Keywords

Navigation