Skip to main content
Log in

Hydrolytic Properties of a Hybrid Xylanase and Its Parents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The hydrolytic properties of a hybrid xylanase (ATx) and its parents (reAnxA and reTfxA) were studied using xylans and xylooligosaccharides as substrates. Analysis of reaction mixtures by high-performance liquid chromatograph revealed that xylotriose (X3) was the main product released from birchwood xylan and wheat bran insoluble xylan by ATx and reAnxA, respectively. Xylobiose (X2) was the main product separately released from birchwood xylan and wheat bran insoluble xylan by reTfxA. Xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6) could be hydrolyzed by ATx, which showed no activity on X2 and X3. Therefore, X4 might be the minimum oligomer hydrolyzed by ATx. X2–X6 could be hydrolyzed by reAnxA and reTfxA, respectively. All of ATx, reAnxA, and reTfxA showed transglycosylation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATx:

a hybrid xylanase whose parents are Thermomonospora fusca xylanase A and Aspergillus niger xylanase A

HPLC:

high-performance liquid chromatography

X:

xylose

X2:

xylobiose

X3:

xylotriose

X4:

xylotetraose

X5:

xylopentaose

X6:

xylohexaose

AFM:

atomic force microscope

DP:

degree of polymerization

XOs:

xylooligosaccharides

References

  1. Thomson, J. A. (1993). FEMS Microbiology Reviews, 104, 65–82. doi:10.1111/j.1574-6968.1993.tb05864.x.

    Article  CAS  Google Scholar 

  2. Cazemier, A. E., Verdoes, J. C., van Ooyen, A. J., & Op den Camp, H. J. M. (1999). Applied and Environmental Microbiology, 65, 4099–4107.

    CAS  Google Scholar 

  3. Collins, T., Meuwis, M. A., Stals, I., Claeyssens, M., Feller, G., & Gerday, C. (2002). Journal of Biological Chemistry, 277, 35133–35139. doi:10.1074/jbc.M204517200.

    Article  CAS  Google Scholar 

  4. Henrissat, B., & Bairoch, A. (1991). Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  5. Henrissat, B., & Bairoch, A. (1996). Biochemical Journal, 316(Pt 2), 695–696.

    Google Scholar 

  6. Henrissat, B., & Davies, G. (1997). Current Opinion in Structural Biology, 7, 637–644. doi:10.1016/S0959-440X(97)80072-3.

    Article  CAS  Google Scholar 

  7. Simpson, D. J., Fincher, G. B., Huang, A. H. C., & Cameron-Mills, V. (2003). Journal of Cereal Science, 37, 111–127. doi:10.1006/jcrs.2002.0488.

    Article  CAS  Google Scholar 

  8. Vazquez, M. J., Alonso, J. L., Dominguez, H., & Parajo, J. C. (2000). Trends in Food Science & Technology, 1, 387–393. doi:10.1016/S0924-2244(01)00031-0.

    Article  Google Scholar 

  9. Yang, R., Xu, S., Wang, Z., & Yang, W. (2005). LWT—Food Science and Technology, 38, 677–682.

    CAS  Google Scholar 

  10. Moure, A., Gullon, P., Dominguez, H., & Parajo, J. C. (2006). Process Biochemistry, 41, 1913–1923. doi:10.1016/j.procbio.2006.05.011.

    Article  CAS  Google Scholar 

  11. Yuan, X. P., Wang, J., & Yao, H. Y. (2006). Food Chemistry, 95, 484–492. doi:10.1016/j.foodchem.2005.01.043.

    Article  CAS  Google Scholar 

  12. Akpinar, O., Ak, O., Kavas, A., Bakir, U., & Yilmaz, L. (2007). Journal of Agricultural and Food Chemistry, 55, 5544–5551. doi:10.1021/jf063580d.

    Article  CAS  Google Scholar 

  13. Katapodis, P., & Christakopoulos, P. (2005). NutraCos, 4, 17–21.

    CAS  Google Scholar 

  14. Smiricky-Tjardes, M. R., Flickinger, E. A., Grieshop, C. M., Bauer, L. L., Murphy, M. R., & Fahey, G. C. Jr. (2003). Journal of Animal Science, 81, 2505–2514.

    CAS  Google Scholar 

  15. Katapodis, P., Kavarnou, A., Kintzios, S., Pistola, E., Kekos, D., & Macris, B. J. (2002). Biotechnology Letters, 24, 1413–1416. doi:10.1023/A:1019898414801.

    Article  CAS  Google Scholar 

  16. Yuan, Q. P., Zhang, H., Qian, Z. M., & Yang, X. J. (2004). Journal of Chemical Technology & Biotechnology, 79, 1073–1079. doi:10.1002/jctb.1071.

    Article  CAS  Google Scholar 

  17. Sun, J. Y., Liu, M. Q., Xu, Y. L., Xu, Z. R., Pan, L., & Gao, H. (2005). Protein Expression and Purification, 42, 122–130. doi:10.1016/j.pep.2005.03.009.

    Article  CAS  Google Scholar 

  18. Beaugrand, J., Crônier, D., Debeire, P., & Chabbert, B. (2004). Journal of Cereal Science, 40, 223–230. doi:10.1016/j.jcs.2004.05.003.

    Article  CAS  Google Scholar 

  19. Baker, A. A., Halber, W., Sugiyama, J., & Miles, M. J. (1997). Journal of Structural Biology, 11, 129–138. doi:10.1006/jsbi.1997.3866.

    Article  Google Scholar 

  20. Košikobá, B., Zakutná, L., & Joniak, D. (1978). Holzforschung, 32, 15–18.

    Article  Google Scholar 

  21. Pell, G., Szabo, L., Charnock, S. J., Xie, H. F., Gloster, T. M., Davies, G. J., & Gilbert, H. J. (2004a). Journal of Biological Chemistry, 279, 11777–11788. doi:10.1074/jbc.M311947200.

    Article  CAS  Google Scholar 

  22. Pell, G., Taylor, E. J., Gloster, T. M., Turkenburg, J. P., Fontes, C. M. G. A., Ferreira, L. M. A., et al. (2004b). Journal of Biological Chemistry, 279, 9597–9605. doi:10.1074/jbc.M312278200.

    Article  CAS  Google Scholar 

  23. Kimura, I., & Tajima, S. (1998). Journal of Fermentation and Bioengineering, 85, 283–288. doi:10.1016/S0922-338X(97)85676-0.

    Article  CAS  Google Scholar 

  24. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338. doi:10.1007/s002530100704.

    Article  CAS  Google Scholar 

  25. Subramaniyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64. doi:10.1080/07388550290789450.

    Article  CAS  Google Scholar 

  26. Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. T., & Hayashi, K. (2004). Journal of Molecular Catalysis. B, Enzymatic, 27, 207–213. doi:10.1016/j.molcatb.2003.11.012.

    Article  CAS  Google Scholar 

  27. Biely, P., Krátky, Z., & Vrasanská, M. (1981). European Journal of Biochemistry, 119, 559–564. doi:10.1111/j.1432-1033.1981.tb05644.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High-Tech Research and Development Plan (2007AA100601), and was also supported by the Science and Technology Department of Zhejinag Province of China (2006C12036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, JY., Liu, MQ. & Weng, XY. Hydrolytic Properties of a Hybrid Xylanase and Its Parents. Appl Biochem Biotechnol 152, 428–439 (2009). https://doi.org/10.1007/s12010-008-8316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8316-y

Keywords

Navigation