Skip to main content
Log in

Effect of Physicochemical Parameters on Enzymatic Biodecaffeination During Tea Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We report for the first time the development of a biodecaffeination process for tea synchronised with tea fermentation process using enzymes isolated from Pseudomonas alcaligenes. Cell-free extract was used for biodecaffeination of tea during fermentation of tea and 80% of the caffeine in the tea dhool was degraded within 90 min of incubation. Several factors that tend to effect the biodecaffeination during this stage, like moisture, aeration, intermittent enzyme addition and mixing, were optimized, and inhibitory interactions of proteins with polyphenols, caffeine–polyphenol interactions, which directly influence the biodecaffeination process were prevented by the use of glycine (5% w/w) in the dhool. Tea decaffeinated through the enzymatic route retained the original flavor and aroma, and there was an increase in the total polyphenol content of the tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Camargo, M. C. R., & Toledo, M. C. F. (1998). Caffeine content of commercial Brazilian coffee. Ciencia Technologia de Alimentos, 18, 421–424.

    Article  CAS  Google Scholar 

  2. Kretschmar, J. A., & Baumann, T. W. (1999). Caffeine in citrus flowers. Phytochemistry, 52, 19–23.

    Article  CAS  Google Scholar 

  3. Caudle, A. G., & Bell, L. N. (2000). Caffeine and theobromine content of ready to eat chocolate cereals. Journal of the American Dietetic Association, 100, 690–692.

    Article  CAS  Google Scholar 

  4. Woolfolk, C. A. (1975). Metabolism of N methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen. Journal of Bacteriology, 123, 1088–1106.

    CAS  Google Scholar 

  5. Keya, C. A., Crozier, A., & Ashihara, H. (2003). Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. FEBS Letters, 554, 473–477.

    Article  CAS  Google Scholar 

  6. Ogita, S., Uefuj, H., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423, 823.

    Article  CAS  Google Scholar 

  7. Sarath Babu, V. R., Patra, S., Thakur, M. S., Karanth, N. G., & Varadaraj, M. C. (2005). Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme and Microbial Technology, 37(6), 617–624.

    Article  Google Scholar 

  8. Karl, J. S., Nataliia, V. T., & Penelope, Y. L. (1996). Nature of polyphenol–protein interactions. Journal of Agricultural and Food Chemistry, 44(1), 80–85.

    Article  Google Scholar 

  9. Elisabeth, J., John, O'C. J., Patrick, A. F., Mike, P. W., (2004). Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules, 5(3), 942–949.

    Google Scholar 

  10. Charlton, A. J., Davis, A. L., Jones, D. P., Lewis, J. R., Davies, A. P., Haslam, E., Williamson, M. P., (2000). The self-association of the black tea polyphenol theaflavin and its complexation with caffeine. Journal of the Chemical Society-perkin Transaction, 2, 317–322.

  11. Shoshana, M. A., & Amos, E. R. (1976). Leaf cell water and enzyme activity. Plant Physiology, 57, 656–658.

    Article  Google Scholar 

  12. Haslam, E. (1974). Polyphenol–protein interactions. Biochemical Journal, 139(1), 285–288.

    Google Scholar 

  13. Craft, N. E., Haitema, T., Brindle, L. K., Yamini, S., Humphrey, J. H., West, K. P. (2000). Retinol analysis in dried blood spots by HPLC. Journal of Nutrition, 130, 882–885.

    Google Scholar 

  14. Siebert, K. J., Carrasco, A., Lynn, P. Y. (1996). Formation of proteinpolyphenol haze in beverages. Journal of Agricultural and Food Chemistry, 44, 1997–2005.

    Google Scholar 

  15. Kotaro, K., Hiroe, Y., Chikara, H., & Hiroshi, S. (1998). Glycine protects against strong protein denaturing activity of oleuropin, a phenolic compound in privet leaves. Journal of Chemical Ecology, 24(4), 735–751.

    Article  Google Scholar 

  16. Kellerhals, M., Hazenberg, W., & Witholt, B. (1999). High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two liquid-phase media. Enzyme and Microbial Technology, 24, 111–116.

    Article  CAS  Google Scholar 

  17. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Google Scholar 

  18. Asano, Y., Komeda, T., & Yamada, H. (1993). Microbial production of theobromine from caffeine. Bioscience, Biotechnology, and Biochemistry, 57, 1286–1289.

    Article  CAS  Google Scholar 

  19. Lipman, F. (1943). Biological oxidations and reductions. Annual Review of Biochemistry, 12, 1–26.

    Google Scholar 

  20. Skujins, J. J., & McLaren, A. D. (1967). Enzyme reaction rates at limited water activities. Science, 158(3808), 1569–1570.

    Article  CAS  Google Scholar 

  21. Yang, F., & Russell, A. J. (1996). The role of hydration in enzyme activity and stability: 1 Water adsorption by alcohol dehydrogenase in a continuous gas phase reactor. Biotechnology and Bioengineering, 49, 700–708.

    Article  CAS  Google Scholar 

  22. Ravichandran, R., & Parthiban, R. (1998). The impact of processing techniques on tea volatiles. Food Chemistry, 62, 347–353.

    Article  CAS  Google Scholar 

  23. Middelhoven, W. J., & Lommen, A. (1984). Degradation of caffeine by Pseudomonas putida C3024; the effect of oxygen concentration. Antonie Van Leeuwenhoek, 50, 298–300.

    Article  Google Scholar 

  24. Thakur M. S., Vegesna R. S. B., Karanth N. G., & Varadraj C. (2006). Decaffeinating microorganism and process of biodecaffeination of caffeine containing solutions. US patent no. 7141411B2.

  25. Collier, P. D., Mallows, R., & Thomas, P. E. (1972). Interactions between theaflavins, flavanols and caffeine. Phytochemistry, 11, 867.

  26. Arnone, A., & Marchessault, R. H. (1968). Molecular association in biological and related systems. American Chemical Society Publication, 84, 235.

    Google Scholar 

  27. Wong, R. S. C., Hoffman, T., & Bennick, A. (1979). The complete primary structure of a proline-rich phosphoprotein from human saliva. Journal of Biological Chemistry, 254, 4800–4808.

    CAS  Google Scholar 

  28. Brown, A. G., Falsaw, C. P., Haslam, E., Holmers, A., & Ollis, W. D. (1966). The constitution of theaflavins. Tetrahedron Letters, 11, 1193–1204.

    Article  Google Scholar 

  29. Chao, C. Y., & Chiang, H. B. (1999). Cream formation in a semifermented tea. Journal of the Science of Food and Agriculture, 79(13), 1767–1774.

    Article  CAS  Google Scholar 

  30. Haslam, E. (2003). Thoughts on thearubigins. Phytochemistry, 64, 61–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Thakur or Sanjukta Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, V.R.S., Thakur, M.S. & Patra, S. Effect of Physicochemical Parameters on Enzymatic Biodecaffeination During Tea Fermentation. Appl Biochem Biotechnol 166, 112–126 (2012). https://doi.org/10.1007/s12010-011-9408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9408-7

Keywords

Navigation