Skip to main content
Log in

Revalorization of green tea waste through the production of cellulases by solid-state fermentation using a Aspergillus niger 28A

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Revalorization of green tea residues (GTR) was carried out through cellulase production by solid-state fermentation (SSF) using Aspergillus niger 28A. An exploratory study in the production of endocellulases (EC), β-glucosidases (BG), and total cellulase activity (FPUase) was carried out. The effect of operational conditions as moisture, temperature, and kinetic time was evaluated. The BG was partially purified by dialysis and ultracentrifugation, and the optimal pH and temperature for its activity were determined. It was found that A. niger 28A produced high titers of EC (65.85 ± 2.18 IU/g), FPUase (5.44 ± 0.11 FPU/g), and BG activities (1,016.52 ± 3.58 IU/g) in the exploratory analysis. The best operational conditions for enzymes production were 34 °C and 96 h for EC and FPUase activities, and 32 °C, 65% moisture, and 120 h for BG activity, respectively. After the partial purification process, the BG reached a specific activity of 496.90 ± 75.04 IU/mg. The optimal conditions for BG activity from the partially purified extracts were pH 4 and 60 °C. GTR constitutes a suitable biomass and substrate in the production of cellulase, reaching high titers of BG, proposing a way for its revalorization through the generation of high added value products as enzymes for the depolymerization of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included this published article. Information is available upon request.

References

  1. Moromi H, Martínez E (2006) Efecto del té verde en la formación de la placa bacteriana por Streptococcus mutans. Odontol Sanmarquina 9:23–24

    Article  Google Scholar 

  2. Oketch-Rabah HA, Roe AL, Rider CV et al (2020) United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Reports 7:386–402. https://doi.org/10.1016/j.toxrep.2020.02.008

    Article  Google Scholar 

  3. Zhang L, Ku KM (2019) Biomarkers-based classification between green teas and decaffeinated green teas using gas chromatography mass spectrometer coupled with in-tube extraction (ITEX). Food Chem 271:450–456. https://doi.org/10.1016/j.foodchem.2018.07.137

    Article  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (2021) FAOSTAT. http://www.fao.org/faostat/es/#data/QC/visualize. Accessed 15 Jan 2021

  5. Gao P, Ogata Y (2020) CHAMU: An effective approach for improving the recycling of tea waste. IOP Conf Ser Mater Sci Eng 711:012024. https://doi.org/10.1088/1757-899X/711/1/012024

  6. Xingfei L, Shunshun P, Wenji Z et al (2020) Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity. Process Biochem. https://doi.org/10.1016/j.procbio.2020.01.021

    Article  Google Scholar 

  7. Bharti R, Singh B (2020) Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel 262:116658. https://doi.org/10.1016/j.fuel.2019.116658

    Article  Google Scholar 

  8. Leite P, Sousa D, Fernandes H et al (2021) Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr Opin Green Sustain Chem 27:100407. https://doi.org/10.1016/j.cogsc.2020.100407

  9. Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8:95. https://doi.org/10.1186/s40643-021-00447-6

  10. Li Y, Zhang P, Zhu D et al (2022) Efficient preparation of soluble inducer for cellulase production and saccharification of corn stover using in-house generated crude enzymes. Biochem Eng J 178:108296. https://doi.org/10.1016/j.bej.2021.108296

    Article  Google Scholar 

  11. Ejaz U, Sohail M, Ghanemi A (2021) Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 6:1–11. https://doi.org/10.3390/biomimetics6030044

    Article  Google Scholar 

  12. Siqueira JGW, Rodrigues C, de Vandenberghe LPS et al (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass Bioenergy 132:105419. https://doi.org/10.1016/j.biombioe.2019.105419

    Article  Google Scholar 

  13. Shiva, Rodríguez-Jasso RM, López-Sandin I et al (2023) Intensification of enzymatic saccharification at high solid loading of pretreated agave bagasse at bioreactor scale. J Environ Chem Eng 11:109257. https://doi.org/10.1016/j.jece.2022.109257

    Article  Google Scholar 

  14. Singhania RR, Ruiz HA, Awasthi MK et al (2021) Challenges in cellulase bioprocess for biofuel applications. Renew Sustain Energy Rev 151:111622. https://doi.org/10.1016/J.RSER.2021.111622

    Article  Google Scholar 

  15. Zanuso E, Ruiz HA, Domingues L, Teixeira JA (2022) Oscillatory flow bioreactor operating at high solids loading for enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 187:108632. https://doi.org/10.1016/J.BEJ.2022.108632

    Article  Google Scholar 

  16. Pino MS, Rodríguez-Jasso RM, Michelin M, Ruiz HA (2019) Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr Polym 211:349–359. https://doi.org/10.1016/J.CARBPOL.2019.01.111

    Article  Google Scholar 

  17. Imran M, Bano S, Nazir S et al (2019) Cellulases Production and Application of Cellulases and Accessory Enzymes in Pulp and Paper Industry: A Review. Biol Res 4:29–39

    Google Scholar 

  18. Moran-Aguilar MG, Costa-Trigo I, Calderón-Santoyo M et al (2021) Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J 172:108060. https://doi.org/10.1016/j.bej.2021.108060

  19. Intasit R, Cheirsilp B, Suyotha W, Boonsawang P (2021) Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi. Biochem Eng J 173:108086. https://doi.org/10.1016/j.bej.2021.108086

    Article  Google Scholar 

  20. Teigiserova DA, Bourgine J, Thomsen M (2021) Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid-state fermentation. Sustain Prod Consum 27:845–857. https://doi.org/10.1016/j.spc.2021.02.010

    Article  Google Scholar 

  21. Leite P, Silva C, Salgado JM, Belo I (2019) Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind Crops Prod 137:315–322. https://doi.org/10.1016/j.indcrop.2019.04.044

    Article  Google Scholar 

  22. Salgado JM, Abrunhosa L, Venâncio A et al (2014) Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Convers Biorefinery 4:201–209. https://doi.org/10.1007/s13399-013-0100-8

    Article  Google Scholar 

  23. Bezerra CO, Carneiro LL, Carvalho EA et al (2021) Artificial Intelligence as a Combinatorial Optimization Strategy for Cellulase Production by Trichoderma stromaticum AM7 Using Peach-Palm Waste Under Solid-State Fermentation. BioEnergy Res 14:1161–1170. https://doi.org/10.1007/s12155-020-10234-4

    Article  Google Scholar 

  24. Singh G, Samuchiwal S, Hariprasad P, Sharma S (2022) Melioration of Paddy Straw to produce cellulase-free xylanase and bioactives under Solid State Fermentation and deciphering its impact by Life Cycle Assessment. Bioresour Technol 360:127493. https://doi.org/10.1016/j.biortech.2022.127493

    Article  Google Scholar 

  25. Marín M, Sánchez A, Artola A (2019) Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J Clean Prod 209:937–946. https://doi.org/10.1016/j.jclepro.2018.10.264

    Article  Google Scholar 

  26. Lodha A, Pawar S, Rathod V (2020) Optimised cellulase production from fungal co-culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under solid state fermentation. J Environ Chem Eng 8:103958. https://doi.org/10.1016/j.jece.2020.103958

    Article  Google Scholar 

  27. Singh A, Bajar S, Devi A, Bishnoi NR (2021) Adding value to agro-industrial waste for cellulase and xylanase production via solid-state bioconversion. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01503-z

    Article  Google Scholar 

  28. Desai DI, Iyer BD (2022) Optimization of medium composition for cellulase-free xylanase production by solid-state fermentation on corn cob waste by Aspergillus niger DX-23. Biomass Convers Biorefinery 12:1153–1165. https://doi.org/10.1007/s13399-020-00749-3

    Article  Google Scholar 

  29. Mule TA, Sawant SS, Odaneth AA (2022) Maize bran as a potential substrate for production of β-glucosidase. Biomass Convers Biorefinery 1–11. https://doi.org/10.1007/S13399-022-02747-z

  30. Saldaña-Mendoza SA, Ascacio-Valdés JA, Palacios-Ponce AS et al (2020) Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India. Syst Microbiol Biomanufacturing. https://doi.org/10.1007/s43393-020-00001-z

    Article  Google Scholar 

  31. Xiao Z, Storms R, Tsang A (2004) Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng 88:832–837. https://doi.org/10.1002/bit.20286

    Article  Google Scholar 

  32. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  Google Scholar 

  33. Berghem LER, Pettersson LG (1974) The Mechanism of Enzymatic Cellulose Degradation: Isolation and Some Properties of a β-Glucosidase from Trichoderma viride. Eur J Biochem 46:295–305. https://doi.org/10.1111/j.1432-1033.1974.tb03621.x

    Article  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of portein utilizing the pcinciple of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/j.cj.2017.04.003

    Article  Google Scholar 

  35. de Oliveira RP, Gurgel LVA, Pasquini D et al (2020) Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renew Energy 145:2683–2693. https://doi.org/10.1016/j.renene.2019.08.041

    Article  Google Scholar 

  36. Wattanakitjanukul N, Sukkasem C, Chiersilp B, Boonsawang P (2020) Use of Palm Empty Fruit Bunches for the Production of Ligninolytic Enzymes by Xylaria sp. in Solid State Fermentation. Waste Biomass Valor 11:3953–3964. https://doi.org/10.1007/s12649-019-00710-0

    Article  Google Scholar 

  37. Shruthi K, Yadav PS, Prasad BVS, Chandra MS (2019) Cellulase production by Aspergillus unguis in solid state fermentation. J For Res 30:205–212. https://doi.org/10.1007/s11676-018-0619-4

    Article  Google Scholar 

  38. Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95. https://doi.org/10.1016/j.biortech.2017.08.192

    Article  Google Scholar 

  39. Dias LM, dos Santos BV, Albuquerque CJB et al (2018) Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J Appl Microbiol 124:708–718. https://doi.org/10.1111/jam.13672

    Article  Google Scholar 

  40. Leite P, Salgado JM, Venâncio A et al (2016) Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 214:737–746. https://doi.org/10.1016/j.biortech.2016.05.028

    Article  Google Scholar 

  41. Noor El-Deen AM, Shata HMAH, Farid MAF (2014) Improvement of β-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. Ann Microbiol 64:627–637. https://doi.org/10.1007/s13213-013-0696-8

    Article  Google Scholar 

  42. Crognale S, Liuzzi F, D’Annibale A et al (2019) Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass Bioenergy 127:105276. https://doi.org/10.1016/j.biombioe.2019.105276

    Article  Google Scholar 

  43. Prajapati BP, Kumar Suryawanshi R, Agrawal S et al (2018) Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250:733–740. https://doi.org/10.1016/j.biortech.2017.11.099

    Article  Google Scholar 

  44. das Neves CA, de Menezes LHS, Soares GA et al (2020) Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00930-8

    Article  Google Scholar 

  45. Nishida VS, de Oliveira RF, Brugnari T et al (2018) Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process. Int J Biol Macromol 111:1206–1213. https://doi.org/10.1016/j.ijbiomac.2018.01.146

    Article  Google Scholar 

  46. Aliyah A, Alamsyah G, Ramadhani R, Hermansyah H (2017) Production of α-Amylase and β-Glucosidase from Aspergillus Niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia 136:418–423. https://doi.org/10.1016/j.egypro.2017.10.269

    Article  Google Scholar 

  47. Mitchell DA, Sugai-Guérios MH, Krieger N (2019) Solid-State Fermentation. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier Inc., pp 1–9

  48. dos Santos TC, Abreu Filho G, de Brito AR et al (2016) Production and Characterization of Cellulolytic Enzymes By Aspergillus Niger and Rhizopus Sp. By Solid State Fermentation of Prickly Pear. Rev Caatinga 29:222–233. https://doi.org/10.1590/1983-21252016v29n126rc

    Article  Google Scholar 

  49. Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101. https://doi.org/10.1016/S1369-703X(02)00122-5

    Article  Google Scholar 

  50. Xuesheng D, Zeng X, Lin D, Yao S (2018) Ethanol tolerant endoglucanase from Aspergillus niger isolated from wine fermentation cellar. Biocatal Agric Biotechnol 15:19–24. https://doi.org/10.1016/j.bcab.2018.04.016

    Article  Google Scholar 

  51. Boggione MJ, Allasia MB, Aguilar CN, Farruggia B (2020) Valorization of corn cob for the obtention and purification of endoglucanase produced by SSF. Process Biochem 88:106–112. https://doi.org/10.1016/j.procbio.2019.09.026

    Article  Google Scholar 

  52. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol 25:437–441. https://doi.org/10.1016/j.nbt.2009.02.002

    Article  Google Scholar 

  53. Kang SW, Park YS, Lee JS et al (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156. https://doi.org/10.1016/S0960-8524(03)00172-X

    Article  Google Scholar 

  54. Akula S, Golla N (2018) Optimization of Cellulase Production by Aspergillus niger Isolated from Forest Soil. Open Biotechnol J 12:256–269. https://doi.org/10.2174/1874070701812010256

    Article  Google Scholar 

  55. Saida L, Oberoi HS, Narasu ML (2013) Studies on Cellulase Production by Solid state Fermentation using Sweet Sorghum bagasse Abstract : Helix 1:261–266

  56. Dos Santos TC, Gomes DPP, Bonomo RCF, Franco M (2012) Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133:1299–1304. https://doi.org/10.1016/j.foodchem.2011.11.115

    Article  Google Scholar 

  57. Behera BC, Sethi BK, Mishra RR et al (2017) Microbial cellulases – Diversity & biotechnology with reference to mangrove environment : A review. J Genet Eng Biotechnol 15:197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

    Article  Google Scholar 

  58. Karami F, Ghorbani M, SadeghiMahoonak A, Khodarahmi R (2020) Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: Possible broad prospects for industrial applications. Lwt 118:108770. https://doi.org/10.1016/j.lwt.2019.108770

    Article  Google Scholar 

  59. Rajoka MI, Akhtar MW, Hanif A, Khalid AM (2006) Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22:991–998. https://doi.org/10.1007/s11274-006-9146-0

    Article  Google Scholar 

  60. Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92:305–311. https://doi.org/10.1016/S1389-1723(01)80231-0

    Article  Google Scholar 

  61. Mekala NK, Singhania RR, Sukumaran RK, Pandey A (2008) Cellulase production under solid-State fermentation by trichoderma reesei RUT C30: Statistical optimization of process parameters. Appl Biochem Biotechnol 151:122–131. https://doi.org/10.1007/s12010-008-8156-9

    Article  Google Scholar 

  62. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

    Article  Google Scholar 

  63. Garcia NFL, da Silva Santos FR, Gonçalves FA et al (2015) Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electron J Biotechnol 18:314–319. https://doi.org/10.1016/j.ejbt.2015.05.007

    Article  Google Scholar 

  64. Ng IS, Li CW, Chan SP et al (2010) High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 101:1310–1317. https://doi.org/10.1016/j.biortech.2009.08.049

    Article  Google Scholar 

  65. Pandey A, Ashakumary L, Selvakumar P, Vijayalakshmi KS (1994) Influence of water activity on growth and activity of Aspergillus niger for glycoamylase production in solid-state fermentation. World J Microbiol Biotechnol 10:485–486. https://doi.org/10.1007/BF00144481

    Article  Google Scholar 

  66. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  Google Scholar 

  67. Soccol CR, da Costa ESF, Letti LAJ et al (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 1:52–71. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  68. Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J Biotechnol 269:16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010

    Article  Google Scholar 

  69. Narasimha G, Sridevi A, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Purification and Characterization of β-Glucosidase from Aspergillus Niger. Int J Food Prop 19:652–661. https://doi.org/10.1080/10942912.2015.1023398

    Article  Google Scholar 

  70. Ali N, Xue Y, Gan L et al (2016) Purification, characterization, gene cloning and sequencing of a new β-glucosidase from Aspergillus niger BE-2. Appl Biochem Microbiol 52:564–571. https://doi.org/10.1134/S0003683816050045

    Article  Google Scholar 

  71. Zhao L, Zhou T, Li X et al (2013) Expression and characterization of GH3 β-Glucosidase from Aspergillus niger NL-1 with high specific activity glucose inhibition and solvent tolerance. Microbiol Russian Fed 82:356–363. https://doi.org/10.1134/S0026261713030181

    Article  Google Scholar 

  72. Xie Y, Gao Y, Chen Z (2004) Purification and characterization of an extracellular β-glucosidase with high transglucosylation activity and stability from Aspergillus niger No. 5.1. Appl Biochem Biotechnol 119:229–240. https://doi.org/10.1007/s12010-004-0004-y

    Article  Google Scholar 

  73. Watanabe A, Suzuki M, Ujiie S, Gomi K (2016) Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae. J Biosci Bioeng 121:259–264. https://doi.org/10.1016/j.jbiosc.2015.07.011

    Article  Google Scholar 

  74. Krogh KBRM, Harris PV, Olsen CL et al (2010) Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86:143–154. https://doi.org/10.1007/s00253-009-2181-7

    Article  Google Scholar 

  75. Ang SK, Shaza EM, Adibah YA et al (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  Google Scholar 

  76. Leite RSR, Gomes E, da Silva R (2007) Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem 42:1101–1106. https://doi.org/10.1016/j.procbio.2007.05.003

    Article  Google Scholar 

  77. Quirasco Brauch M, López-Mungía Canales A (2006) Enzimas. In: Quintanar Duarte E (ed) Química de los alimentos, 4th ed. PEARSON EDUCACIÓN, México, pp 301–362

  78. Ezeilo UR, Lee CT, Huyop F et al (2019) Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J Environ Manage 243:206–217. https://doi.org/10.1016/j.jenvman.2019.04.113

    Article  Google Scholar 

  79. Daniel RM, Danson MJ (2013) Temperature and the catalytic activity of enzymes: A fresh understanding. FEBS Lett 587:2738–2743. https://doi.org/10.1016/j.febslet.2013.06.027

    Article  Google Scholar 

  80. Peterson ME, Eisenthal R, Danson MJ et al (2004) A new intrinsic thermal parameter for enzymes reveals true temperature optima. J Biol Chem 279:20717–20722. https://doi.org/10.1074/jbc.M309143200

    Article  Google Scholar 

  81. Danson MJ, Hough DT, Russell RJM et al (1996) Enzyme thermostability and thermoactivity. Protein Eng 9:629–630. https://doi.org/10.1093/protein/9.8.629

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support given by the National Council of Science and Technology (CONACYT-Mexico) through the project FONCICYT-CONACYT-SRE-C0013-2015-03-266614, which was implemented within a framework of bilateral cooperation between Mexico and India. Author Salvador A. Saldaña Mendoza thanks CONACYT-Mexico and the Autonomous University of Coahuila for the financial support for his studies through the scholarship with number 868325. Authors also thank Juan C. Contreras-Esquivel, Raúl Rodríguez-Herrera, José L. Martínez-Hernández, and Shiburaj Sughatan for their help whit the language and proofread the article.

Funding

This work was funding by the National Council of Science and Technology (CONACYT-Mexico) through the project FONCICYT-CONACYT-SRE-C0013-2015–03-266614.The funding source had no participation in the development of the research, writing of the article or in making the decision to submit this work for publication. The author Salvador Alexis Saldaña Mendoza thanks CONACYT-Mexico for the scholarship granted for the development of his postgraduate studies with number 868325.

Author information

Authors and Affiliations

Authors

Contributions

Salvador A. Saldaña-Mendoza: Conceptualization, Methodology, Investigation Writing—Original Draft. Arturo S. Palacios-Ponce: Review & Editing. Héctor A. Ruiz: Resources, Review & Editing. Alberto Ascacio-Valdés: Resources. C.N. Aguilar: Project administration, Funding acquisition, Supervision.

Corresponding author

Correspondence to Cristóbal N. Aguilar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldaña-Mendoza, S.A., Palacios-Ponce, A.S., Ruiz, H.A. et al. Revalorization of green tea waste through the production of cellulases by solid-state fermentation using a Aspergillus niger 28A. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03919-1

Keywords

Navigation