Skip to main content
Log in

Oxidative Lime Pretreatment of Dacotah Switchgrass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative lime pretreatment increases the enzymatic digestibility of lignocellulosic biomass primarily by removing lignin. In this study, recommended pretreatment conditions (reaction temperature, oxygen pressure, lime loading, and time) were determined for Dacotah switchgrass. Glucan and xylan overall hydrolysis yields (72 h, 15 FPU/g raw glucan) were measured for 105 different reaction conditions involving three different reactor configurations (very short term, short term, and long term). The short-term reactor was the most productive. At the recommended pretreatment condition (120 °C, 6.89 bar O2, 240 min), it achieved an overall glucan hydrolysis yield of 85.2 g glucan hydrolyzed/100 g raw glucan and an overall xylan yield of 50.1 g xylan hydrolyzed/100 g raw xylan. At this condition, glucan oligomers (1.80 g glucan recovered/100 g glucan in raw biomass) and xylan oligomers (25.20 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor, which compensate for low pretreatment yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Energy UDO. (2009). Annual energy review 2009 report no. DOE/EIA-0384 (2009). Washington: Energy Information Administration.

    Google Scholar 

  2. Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  3. McLaughlin, S. B., de la Torre Ugarte, D. G., Garten, C. T., Lynd, L. R., Sanderson, M. A., Tolbert, V. R., et al. (2002). High-value renewable energy from prairie grasses. Environmental Science & Technology, 36, 2122–2129.

    Article  CAS  Google Scholar 

  4. Hubbard, H. M. (1991). The real cost of energy. Scientific American; (United States), 264(4), 36–40. 42.

    Google Scholar 

  5. Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences, 105, 464–469.

    Article  CAS  Google Scholar 

  6. Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1–24.

    Article  CAS  Google Scholar 

  7. Saha, B. C., & Cotta, M. A. (2008). Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass and Bioenergy, 32, 971–977.

    Article  CAS  Google Scholar 

  8. Rabelo, S., Filho, R., & Costa, A. (2009). Lime pretreatment of sugarcane bagasse for bioethanol production. Applied Biochemistry and Biotechnology, 153, 139–150.

    Article  CAS  Google Scholar 

  9. Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  10. McMillan, J. (1994). In: Enzymatic conversion of biomass for fuels production: ACS symposium series (pp. 292–324). Washington: American Chemical Society.

  11. Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84-6, 5–37.

    Article  Google Scholar 

  12. O’Dwyer, J. P., Zhu, L., Granda, C. B., & Holtzapple, M. T. (2007). Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresource Technology, 98, 2969–2977.

    Article  Google Scholar 

  13. Sierra, R., Smith, A., Granda, C., & Holtzapple, M. T. (2008). Producing fuels and chemicals from lignocellulosic biomass. Chemical Engineering Progress, 104, S10–S18.

    CAS  Google Scholar 

  14. Lee, Y. H., & Fan, L. T. (1982). Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnology and Bioengineering, 24, 2383–2406.

    Article  CAS  Google Scholar 

  15. Kong, F., Engler, C., & Soltes, E. (1992). Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Applied Biochemistry and Biotechnology, 34–35, 23–35.

    Article  Google Scholar 

  16. Holtzapple, M. T. and Davison, R. R. (1999). Methods of biomass pretreatment.

  17. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  18. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.

    Article  CAS  Google Scholar 

  19. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96, 2026–2032.

    Article  CAS  Google Scholar 

  20. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., Lee, Y. Y., et al. (2009). Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnology Progress, 25, 333–339.

    Article  CAS  Google Scholar 

  21. Schmer, M. R., Vogel, K. P., Mitchell, R. B., Moser, L. E., Eskridge, K. M., & Perrin, R. K. (2006). Establishment stand thresholds for switchgrass grown as a bioenergy crop. Crop Science, 46, 157–161.

    Article  Google Scholar 

  22. Wright, L., & Turhollow, A. (2010). Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass and Bioenergy, 34, 851–868.

    Article  Google Scholar 

  23. Walsh, M., de la Torre Ugarte, D., Shapouri, H., & Slinsky, S. (2003). Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environmental & Resource Economics, 24, 313–333.

    Article  Google Scholar 

  24. Chang, V. S., Nagwani, M., & Holtzapple, M. T. (1998). Lime pretreatment of crop residues bagasse and wheat straw. Applied Biochemistry and Biotechnology, 74, 135–159.

    Article  CAS  Google Scholar 

  25. Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199.

    Article  CAS  Google Scholar 

  26. Sierra, R., Granda, C., & Holtzapple, M. T. (2009). Short-term lime pretreatment of poplar wood. Biotechnology Progress, 25, 323–332.

    Article  CAS  Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory analytical procedure. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  28. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory analytical procedure. Golden: National Renewable Energy Laboratory.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the US Department of Energy, contract number DE-FG36-07GO17102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Falls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falls, M., Sierra-Ramirez, R. & Holtzapple, M.T. Oxidative Lime Pretreatment of Dacotah Switchgrass. Appl Biochem Biotechnol 165, 243–259 (2011). https://doi.org/10.1007/s12010-011-9247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9247-6

Keywords

Navigation