Skip to main content
Log in

Identification and Quantitation of Reaction Intermediates and Residuals in Lipase-Catalyzed Transesterified Oils by HPLC

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A high-performance liquid chromatography (HPLC) unit equipped with size exclusion column and a refractive index detector was used for simultaneous monitoring, identification, and quantitation of the reaction components from lipase-catalyzed transesterification of three oils. The procedure simultaneously separated and detected the unreacted triacylglycerols (TAG), diacyl-, and monoacyl-glycerol (DAG and MAG) co-products, residual alcohol as well as free fatty acid (FFA) based on retention times. The chromatograms showed well separated and resolved peaks. The elution of the components from the transesterification reaction in increasing order was: TAG < DAG < FFA < MAG. Generally, higher alcohol ratios decreased the conversion of TAG in all the oils studied with between 14% and 94% of TAG remaining at all the treatment combinations. Higher amount of salmon skin oil (SSO) TAG was generally converted to DAG than Rothsay composite (RC) and olive oil (OO) TAG. Relatively higher amount of OO DAG was converted to MAG than SSO and RC with only 5–14% DAG remaining in OO. RC and OO generally accumulated less MAG, and this was reflected as lower MAG levels in RC (<6%) and OO (<14%) compared with SSO (<27%). For the various treatment combinations and the three oils used in this study, the least amount of FFA was recorded in transesterified OO with a maximum of approximately 4%. This HPLC method can be used as a simple and fast technique to analyze the reaction components and products of transesterification reactions without the need for additional derivatization steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demirbas, A. (2009). Energ Convers Manag, 50(9), 2239–2249.

    Article  CAS  Google Scholar 

  2. Fjerbaek, L., Christensen, K. V., & Norddahl, B. (2009). Biotechnology and Bioengineering, 102(5), 1298–1315.

    Article  CAS  Google Scholar 

  3. Dubé, M. A., Zheng, S., McLean, D. D., & Kates, M. A. (2004). Jouranl of the American Oil Chemist, 81(6), 599–603.

    Article  Google Scholar 

  4. Knothe, G. (2006). Journal of the American Oil Chemists’ Society, 83(10), 823–833.

    Article  CAS  Google Scholar 

  5. Canakci, M., Ozsezen, A. N., Arcaklioglu, E., & Erdil, A. (2009). Expet Syst Appl, 36(5), 9268–9280.

    Article  Google Scholar 

  6. Monteiro, M. R., Ambrozin, A. R. P., Lião, L. M., & Ferreira, A. G. (2008). Talanta, 77(2), 593–605.

    Article  CAS  Google Scholar 

  7. Ranz, A., Maier, E., & Lankmayr, E. (2010). Fuel, 89(8), 2133–2139.

    Article  CAS  Google Scholar 

  8. ASTM D6751. Available from: http://www.astm.org/Standards/D6751.htm. Accessed October 26, 2010.

  9. EN 14214:2003. Available from: http://www.biodiesels.com.br/docs/biodiesel_for_europe.pdf Accessed October 26, 2010.

  10. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Renewable & Sustainable Energy Reviews, 10(3), 248–268.

    Article  CAS  Google Scholar 

  11. Plattner, R. D. (1981). Methods in Enzymology, 72, 21–34.

    Article  CAS  Google Scholar 

  12. Fillières, R., Benjelloun-Mlayah, B., & Delmas, M. (1995). Journal of the American Oil Chemists’ Society, 72, 427–432.

    Article  Google Scholar 

  13. Lechner, M., Bauer-Plank, C., & Lorbeer, E. (1997). J High Resol Chromatogr, 20, 581–585.

    Article  CAS  Google Scholar 

  14. Knothe, G. (2001). Transaction of the ASAE, 44, 193–200.

    CAS  Google Scholar 

  15. Darnoko, D., Cheryan, M., & Perkins, E. G. (2000). Journal Liquid Chromatography and Related Technologies, 23(15), 2327–2335.

    Article  CAS  Google Scholar 

  16. Salis, A., Pinna, M., Monduzzi, M., & Solinas, V. (2005). Journal of Biotechnology, 119, 291–299.

    Article  CAS  Google Scholar 

  17. Kittirattanapiboon, K., & Krisnangkura, K. (2008). European Journal of Lipid Science and Technology, 110, 422–427.

    Article  CAS  Google Scholar 

  18. Türkan, A., & Kalay, S. (2006). Journal of Chromatography A, 127, 34–44.

    Article  Google Scholar 

  19. Santori, G., Arteconi, A., Di Nicola, G., Moglie, M., & Stryjek, R. (2009). Energy and Fuels, 23(7), 3783–3789.

    Article  CAS  Google Scholar 

  20. Holčapek, M., Jandera, P., Fischer, J., & Prokes, B. (1999). Journal of Chromatography A, 858(1), 13–31.

    Article  Google Scholar 

  21. Arzamendi, G., Arguiñarena, E., Campo, I., & Gandía, L. M. (2006). Chemical Engineering Journal, 122(1–2), 31–40.

    Article  CAS  Google Scholar 

  22. Warabi, Y., Kusdiana, D., & Saka, S. (2004). Bioresource Technology, 91, 283–287.

    Article  CAS  Google Scholar 

  23. Aryee, A. N. A., & Simpson, B. K. (2009). Journal of Food Engineering, 92(3), 353–358.

    Article  CAS  Google Scholar 

  24. AOCS. (1999). AOCS (Ca 2c–25, Ca 5a–40): Official methods and recommended practices of the American Oil Chemists’ Society (5th edn). Champaign: American Oil Chemists’ Society.

    Google Scholar 

  25. Sawa, T. (1978). Econometrica, 46, 1273–1282.

    Article  Google Scholar 

  26. Littell, R. C., Pendergast, J., & Natarajan, R. (2000). Statistics in Medicine, 19(13), 1793–819.

    Article  CAS  Google Scholar 

  27. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  28. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H. (2001). Journal of Bioscience and Bioengineering, 91, 12–15.

    Article  CAS  Google Scholar 

  29. Páez, B. C., Medina, A. R., Rubio, F. C., Moreno, P. G., & Grima, E. M. (2003). Enzyme and Microbial Technology, 33(6), 845–853.

    Article  Google Scholar 

  30. Dizge, N., & Keskinlera, B. (2008). Biomass Bioenergy, 32(12), 1274–1278.

    Article  CAS  Google Scholar 

  31. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Renewable Energy, 34, 1185–1194.

    Article  Google Scholar 

  32. Naranjo, J. C., Córdoba, A., Giraldo, L., García, V. S., & Moreno-Piraján, J. C. (2010). Journal of Molecular Catalysis. B, Enzymatic, 66(1–2), 166–171.

    Article  CAS  Google Scholar 

  33. Fukuda, H., Hama, S., Tamalampudi, S., & Noda, H. (2008). Trends in Biotechnology, 26, 668–673.

    Article  CAS  Google Scholar 

  34. Hernández-Mártin, E., & Otero, C. (2008). Bioresource Technology, 99, 277–286.

    Article  Google Scholar 

  35. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Journal of Molecular Catalysis B, Enzymatic, 16, 53–58.

    Article  CAS  Google Scholar 

  36. Karmee, S. K., & Chadha, A. (2005). Bioresource Technology, 96(13), 1425–1429.

    Article  CAS  Google Scholar 

  37. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Journal of Molecular Catalysis. B, Enzymatic, 17, 133–142.

    Article  CAS  Google Scholar 

  38. Freitas, L., Da Rós, P. C. M., Santos, J. C., & de Castro, H. F. (2009). Process Biochemistry, 44, 1068–1074.

    Article  CAS  Google Scholar 

  39. Derewenda, U., Brzozowski, A. M., Lawson, D. M., & Derewenda, Z. S. (1992). Biochemist, 31, 1532–1541.

    Article  CAS  Google Scholar 

  40. Maruyama, T., Nakajima, M., Uchikawa, S., Nabetani, H., Furusaki, S., & Seki, M. (2000). Journal of the American Oil Chemists’ Society, 77(11), 1121–1127.

    Article  CAS  Google Scholar 

  41. Jaeger, K.-E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., & Misset, O. (1994). FEMS Microbiology Reviews, 15(1), 29–63.

    Article  CAS  Google Scholar 

  42. Lu, J., Chen, Y., Wang, F., & Tan, T. (2009). Journal of Molecular Catalysis. B, Enzymatic, 56, 99–25.

    Article  Google Scholar 

  43. Rodriguez, J. A., Ben Ali, Y., Abdelkafi, S., Mendoza, L. D., Leclaire, J., Fotiadu, F., et al. (2010). Biochimica et Biophysica Acta, 1801(1), 77–83.

    CAS  Google Scholar 

  44. Shimizu, M., Kudo, N., Nakajima, Y., Matsuo, N., Katsuragi, Y., Tokimitsu, I., et al. (2008). Journal of the American Oil Chemists’ Society, 85(7), 629–633.

    Article  CAS  Google Scholar 

  45. Kumari, V., Shah, S., & Gupta, M. N. (2007). Energy and Fuels, 21(1), 368–372.

    Article  CAS  Google Scholar 

  46. Shah, S., & Gupta, M. N. (2007). Process Biochemistry, 42(3), 409–414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council (NSERC-Strategic Program) of Canada, and the provision of research samples by Atkins and Frères Inc. and Rothsay® Biodiesel, as well as the technical assistance with the HPLC from Dr. Veronique Fournier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryee, A.N.A., Phillip, L.E., Cue, R.I. et al. Identification and Quantitation of Reaction Intermediates and Residuals in Lipase-Catalyzed Transesterified Oils by HPLC. Appl Biochem Biotechnol 165, 155–177 (2011). https://doi.org/10.1007/s12010-011-9241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9241-z

Keywords

Navigation