Skip to main content
Log in

Control and Optimization of Clostridium tyrobutyricum ATCC 25755 Adhesion into Fibrous Matrix in a Fibrous Bed Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The great performance of a fibrous bed bioreactor (FBB) is mainly dependent on the cell adhesion and immobilization into the fibrous matrix. Therefore, understanding the mechanism and factors controling cell adhesion in the fibrous matrix is necessary to optimize the FBB setup and further improve the fermentability. The adhesion behavior of a strain of Clostridium tyrobutyricum isolated from an FBB was studied, which was proven to be affected by the different environmental conditions, such as growth phase of cells, pH, ionic strength, ionic species, and composition of media. Our results also suggested that electrostatic interactions played an important role on bacteria adhesion into the fibrous matrix. This study demonstrated that the compositions of fermentation broth would have a significant effect on cell adhesion. Consequently, a two-stage glucose supply control strategy was developed to improve the performance of FBB with higher viable cell density in the operation of the FBB setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang, S.T. (1996). Extractive fermentation using convoluted fibrous bed bioreactor useful for converting sugars into organic acids and their salts, US Patent 5,563,069-A.

  2. Suwannakham, S., & Yang, S. T. (2005). Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 91, 325–337.

    Article  CAS  Google Scholar 

  3. Hayashi, H., Ono, M., Tsuneda, S., et al. (2002). Three-dimensional immobilization of bacterial cells with a fibrous network and its application in a high-rate fixed-bed nitrifying bioreactor. Journal of Chemical Engineering Japan, 35, 68–75.

    Article  CAS  Google Scholar 

  4. Zhu, Y., & Yang, S. T. (2003). Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnology Progress, 19, 365–372.

    Article  CAS  Google Scholar 

  5. Huang, Y. L., Mann, K., Novak, J. M., et al. (1998). Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnology Progress, 14, 800–806.

    Article  CAS  Google Scholar 

  6. Tay, A., & Yang, S. T. (2002). Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 80, 1–12.

    Article  CAS  Google Scholar 

  7. Zhang, A., & Yang, S. T. (2009). Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnology and Bioengineering, 104, 766–773.

    CAS  Google Scholar 

  8. Bai, Y. L., & Yang, S. T. (2005). Biotransformation of R-2-hydroxy-4-phenylbutyric acid by d-lactate dehydrogenase and Candida boidinii cells containing formate dehydrogenase coimmobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 92, 137–146.

    Article  CAS  Google Scholar 

  9. Kilonzo, P., Margaritis, A., & Bergougnou, M. (2009). Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Journal of Biotechnology, 143, 60–68.

    Article  CAS  Google Scholar 

  10. Yang, S. T., Lo, Y. M., & Min, D. B. (1996). Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnology Progress, 12, 630–637.

    Article  CAS  Google Scholar 

  11. Chen, C. N., Huang, Y. L., & Yang, S. T. (2002). A fibrous-bed bioreactor for continuous production of developmental endothelial locus-1 by osteosarcoma cells. Journal of Biotechnology, 97, 23–39.

    Article  CAS  Google Scholar 

  12. Ouyang, A., & Yang, S. T. (2008). A two-stage perfusion fibrous bed bioreactor system for mass production of embryonic stem cells. Expert Opinion on Biological Therapy, 8, 895–909.

    Article  CAS  Google Scholar 

  13. Yang, S. T., & Shu, C. H. (1996). Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor. Biotechnology Progress, 12, 449–456.

    Article  CAS  Google Scholar 

  14. Chen, J. P., & Lin, T. C. (2006). High-density culture of hepatocytes in a packed-bed bioreactor using a fibrous scaffold from plant. Biochemical Engineering Journal, 30, 192–198.

    Article  CAS  Google Scholar 

  15. Zhu, H., & Yang, S. T. (2004). Long-term continuous production of monoclonal antibody by hybridoma cells immobilized in a fibrous-bed bioreactor. Cytotechnology, 44, 1–14.

    Article  CAS  Google Scholar 

  16. Chen, J., Chen, H. M., Zhu, X. C., et al. (2009). Long-term production of soluble human Fas ligand through immobilization of Dictyostelium discoideum in a fibrous bed bioreactor. Applied Microbiology and Biotechnology, 82, 241–248.

    Article  CAS  Google Scholar 

  17. Huang, Y. L., Wu, Z. T., Zhang, L. K., et al. (2002). Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresource Technology, 82, 51–59.

    Article  CAS  Google Scholar 

  18. Liu, X. G., & Yang, S. T. (2006). Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry, 41, 801–808.

    Article  CAS  Google Scholar 

  19. Zhu, Y., Wu, Z. T., & Yang, S. T. (2002). Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochemistry, 38, 657–666.

    Article  CAS  Google Scholar 

  20. Jiang, L., Wang, J. F., Liang, S. Z., et al. (2009). Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technology, 100, 3403–3409.

    Article  CAS  Google Scholar 

  21. Jiang, L., Wang, J. F., Liang, S. Z., et al. (2010). Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Applied Biochemistry and Biotechnology, 160, 350–359.

    Article  CAS  Google Scholar 

  22. Humphrey, B., Kjelleberg, S., & Marshall, K. C. (1983). Responses of marine bacteria under starvation conditions at a solid–water interface. Applied and Environmental Microbiology, 45, 43–47.

    CAS  Google Scholar 

  23. Rosenberg, M. (1991). Basic and applied aspects of microbial adhesion at the hydrocarbon: water interface. Critical Reviews in Microbiology, 18, 159–173.

    Article  CAS  Google Scholar 

  24. Jana, T. K., Srivastava, A. K., Csery, K., et al. (2000). Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Canadian Journal of Microbiology, 46, 28–37.

    Article  CAS  Google Scholar 

  25. Bringi, V., & Dale, B. E. (1985). Enhanced yeast immobilization by nutrient starvation. Biotechnology Letters, 7, 905–908.

    Article  CAS  Google Scholar 

  26. Merritt, K., & An, Y. H. (2000). Factors influencing bacterial adhesion. In Y. H. An & R. J. Friedman (Eds.), Handbook of bacterial adhesion: principles, methods, and applications. Totowa: Humana Press Inc.

    Google Scholar 

  27. Briandet, R., Meylheuc, T., Maher, C., et al. (1999). Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Applied and Environmental Microbiology, 65, 5328–5333.

    CAS  Google Scholar 

  28. Liu, X. M., Sheng, G. P., Wang, J., et al. (2008). Quantifying the surface characteristics and flocculability of Ralstonia eutropha. Applied Microbiology and Biotechnology, 79, 187–194.

    Article  CAS  Google Scholar 

  29. Rochex, A., Lecouturier, D., Pezron, I., et al. (2004). Adhesion of a Pseudomonas putida strain isolated from a paper machine to cellulose fibers. Applied Microbiology and Biotechnology, 65, 727–733.

    Article  CAS  Google Scholar 

  30. McEldowney, S., & Fletcher, M. (1986). Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Applied and Environmental Microbiology, 52, 460–465.

    CAS  Google Scholar 

  31. Marshall, K. C., Stout, R., & Mitchell, R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. Journal of General Microbiology, 68, 337–348.

    CAS  Google Scholar 

  32. Rijnaarts, H. H. M., Norde, W., Lyklema, J., et al. (1995). The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloid and Surfaces B: Biointerfaces, 4, 191–197.

    Article  CAS  Google Scholar 

  33. Abu-Lail, N. I., & Camesano, T. A. (2003). Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442. Biomacromolecules, 4, 1000–1012.

    Article  CAS  Google Scholar 

  34. Gong, J. H., & Forsberg, C. W. (1989). Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Applied and Environmental Microbiology, 55, 3039–3044.

    CAS  Google Scholar 

  35. Liu, Y. (1995). Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Colloid and Surfaces B: Biointerfaces, 5, 213–219.

    Article  CAS  Google Scholar 

  36. Vanoss, C. J. (1993). Acid-base interfacial interactions in aqueous media. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 78, 1–49.

    Article  CAS  Google Scholar 

  37. Otto, K., Elwing, H., & Hermansson, M. (1999). Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. Journal of Bacteriology, 181, 5210–5218.

    CAS  Google Scholar 

  38. Yee, N., Fein, J. B., & Daughney, C. J. (2000). Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta, 64, 609–617.

    Article  CAS  Google Scholar 

  39. Bar, R., Gainer, J. L., & Kirwan, D. J. (1987). Ethanol fermentation by ionically adsorbed Zymomonas mobilis: environmental effects on cell immobilization. Biotechnology and Bioengineering, 29, 1045–1049.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2009AA02Z206) and the National Basic Research Program of China (2009CB724700), the Ministry of Science and Technology, China, and the Key Program of the National Natural Science Foundation of China (no. 20936002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jufang Wang or Zhinan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Wang, J., Liang, S. et al. Control and Optimization of Clostridium tyrobutyricum ATCC 25755 Adhesion into Fibrous Matrix in a Fibrous Bed Bioreactor. Appl Biochem Biotechnol 165, 98–108 (2011). https://doi.org/10.1007/s12010-011-9236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9236-9

Keywords

Navigation