Skip to main content
Log in

Determination of Methyl Parathion in Water and Its Removal on Zirconia Using Optical Enzyme Assay

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A simple, miniaturized microplate chemiluminescence assay for determination of methyl parathion (MP) was developed in 384-microwell plates. Zirconia (ZrO2) was added in microwell for adsorption of acetylcholinesterase (AChE). The developed assay is based on inhibition of AChE by MP. A good dynamic range 0.008–1,000 ng/mL was obtained for MP with limit of detection 0.008 ng/mL. Intrabatch and interbatch reproducibility for miniaturized assay was obtained with % RSD up to 3.07 and 5.66, respectively. In 384 well plate formats, 70 samples were simultaneously analyzed within 20 min with assay volume of 41.5 μL. The application of developed assay was extended for MP remediation. Column containing ZrO2 was utilized for remediation where MP was selectively adsorbed. Under optimized condition, adsorption of MP on ZrO2 was found to be 98–99% with 2-h contact time in real water samples. Adsorption of MP on ZrO2 column followed by quantification using developed bioassay provides a novel approach to monitor remediation. The applicability of assay was successfully extended for determination of MP in water samples after removal through ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamanyire, R., & Karalliedde, L. (2004). Occupational Medicine, 54, 69–75. doi:10.1093/occmed/kqh018.

    Article  CAS  Google Scholar 

  2. Chen, W., Zhang, L., & Hou, X. (2006). Environmental Informatics Achieves, 4, 490–501.

    Google Scholar 

  3. Bondarenko, S., Gan, J., Haver, D. L., & Kabashima, J. N. (2004). Environmental Toxicology and Chemistry, 23, 2649–2654.

    Article  CAS  Google Scholar 

  4. Weber, K. (1976). Water Research, 10(3), 237–241. doi:10.1016/0043-1354(76)90133-0.

    Article  CAS  Google Scholar 

  5. Mathur, H. B., Agrwal, H. C., Johnson, S., & Saikia, N. (2005). Centre for Science and Environment Report, New Delhi, India. (CSE/PML/PR-21/2005) (www.cseidnia.org).

  6. WHO recommended classification of pesticides by hazard and guidelines to classification. (2004) International program on chemical safety. WHO library cataloguing in publication data. ISBN 9241546638. http://www.inchem.org/documents/pds/pds/pest7_e.htm.

  7. Falicia, L. E., & Tchounwou, P. B. (2005). International Journal of Environmental Research and Public Health, 2, 430–441. doi:10.3390/ijerph2005030007.

    Article  Google Scholar 

  8. Yang, Q., Sun, Q., Zhou, T., Shi, G., & Jin, L. (2009). Journal of Agricultural and Food Chemistry, 57, 6558–6563. doi:10.1021/jf901286e.

    Article  CAS  Google Scholar 

  9. Mathur, H. B., Johnson, S., Mishra, R., Kumar, A., & Singh, B. Centre for Science and Environment Report (2002). Centre for Science and Environment Report, New Delhi, India. (CSE/PML-6/2002) (www.cseidnia.org).

  10. Amine, A., Mohammadi, H., Bourais, I., & Palleschi, G. (2006). Biosensors and Bioelectronics, 21, 1405–1423. doi:10.1016/j.bios.2005.07.012.

    Article  CAS  Google Scholar 

  11. Mulchandani, A., Chen, W., Mulchandani, P., Wang, J., & Rogers, K. R. (2001). Biosensors & Bioelectronics, 16, 225–230. doi:10.1016/S0956-5663(01)00126-9.

    Article  CAS  Google Scholar 

  12. Risveden, K., Dick, K. A., Bhand, S., Rydberg, P., Samuelson, L., & Danielsson, B. (2010). Nanotechnology, 21, 055102. doi:10.1088/0957-4484/21/5/055102 (8 pp).

    Article  Google Scholar 

  13. Andreescu, S., & Marty, J. L. (2006). Bimolecular Engineering, 23, 1–15. doi:10.1016/j.bioeng.2006.01.001.

    Article  CAS  Google Scholar 

  14. Fukuto, R. T. (1990). Environmental Health Perspectives, 87, 245–254. PMCID: PMC1567830. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567830.

    Article  CAS  Google Scholar 

  15. Kumar, J., & D’Souza, S. F. (2010). Biosensors and Bioelectronics, Article in Press, Corrected Proof. doi:10.1016/j.bios.2010.07.016.

  16. Leng, Y., Wei, H.-P., Zhang, Z.-P., Zhou, Y.-F., Deng, J.-Y., Cui, Z.-Q., et al. (2010). Angewandte Chemie International Edition, 49, 7243–7246. doi:10.1002/anie.201002452.

    Google Scholar 

  17. Du de Du, D., Ye, X., Zhang, J., Zeng, Y., Tu, H., Zhang, A., & Liu, D. (2008). Electrochemistry Communication, 10, 686-690. doi:10.1016/j.elecom.2008.02.019.

    Google Scholar 

  18. Kolosova, A Yu, Park, J. H., Eremin, S. A., Park, S. J., Kang, S. J., Shim, W. B., et al. (2004). Analytica Chimica Acta, 511, 323–331. doi:10.1016/j.aca.2004.01.047.

    Article  CAS  Google Scholar 

  19. Chouhan, R. S., Babu, K. V., Kumar, M. A., Neeta, N. S., Thakur, M. S., Rani, B. E. A., et al. (2006). Biosensors & Bioelectronics, 21, 1264–1271. doi:10.1016/j.bios.2005.05.018.

    Article  CAS  Google Scholar 

  20. Weetall, H. H., Mishra, N. N., Mahfouz, A., & Rogers, K. R. (2004). Analytical Letters, 37, 1297–1305. doi:10.1081/AL-120035899.

    Article  CAS  Google Scholar 

  21. Chouhan, R. S., Vinayaka, A. C., & Thakur, M. S. (2010). Analytical Methods. doi:10.1039/c0ay00109k.

    Google Scholar 

  22. Gracia, L. G., Campana, A. M. G., Chinchilla, J. J. S., Pérez, J. F. H., & Casado, A. G. (2005). Trends in Analytical Chemistry, 24, 927–942. doi:10.1016/j.trac.2005.05.009.

    Article  Google Scholar 

  23. Guardigli, M., Pasini, P., Mirasoli, M., Leoni, A., Andreani, A., & Roda, A. (2005). Analytica Chimica Acta, 535, 139–144. doi:10.1016/j.aca.2004.12.016.

    Article  CAS  Google Scholar 

  24. Parham, H., & Rahbar, N. (2010). Journal of Hazardous Materials, 177, 1077–1084. doi:10.1016/jhazmat.2010.01.031.

    Article  CAS  Google Scholar 

  25. Zhou, J. H., Deng, C. Y., Si, S. H., & Wang, S. E. (2010). Mikrochim Acta. doi:10.1007/s00604-010-0483-1.

    Google Scholar 

  26. Wang, M., & Li, Z. (2008). Sensors and Actuators B: Chemical, 133, 607–712. doi:10.1016/j.snb.2008.03.023.

    Article  Google Scholar 

  27. Liu, G., & Lin, Y. (2005). Analytical Chemistry, 77, 5894–5901. doi:10.1021/ac050791t.

    Article  CAS  Google Scholar 

  28. Zhou, T., & Lucy, C. A. (2008). Journal of Chromatography A, 1213, 8–13. doi:10.1016/j.chroma.2008.09.097.

    Article  CAS  Google Scholar 

  29. Xu, L., & Lee, H. (2007). Analytical Chemistry, 79, 5241–5248. doi:10.1021/ac070449b.

    Article  CAS  Google Scholar 

  30. Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). Biosensors & Bioelectronics, 24, 2377–2383. doi:10.1016/j.bios.2008.12.013.

    Article  CAS  Google Scholar 

  31. Liu, G., Wang, J., Barry, R., Petersen, C., Timchalk, C., Gassman, P., et al. (2008). Chemistry A European Journal, 14, 9951–9959. doi:10.1002./chem.200800412.

    Article  CAS  Google Scholar 

  32. Reshmi, R., Sanjay, G., & Sugunan, S. (2007). Catalysis Communications, 8, 393–399. doi:10.1016/j.catcom.2006.07.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Council of Scientific and Industrial Research CSIR, New Delhi (India) grant no. 23(0002)/06/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Bhand.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

 (DOC 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, K., Mishra, R.K. & Bhand, S. Determination of Methyl Parathion in Water and Its Removal on Zirconia Using Optical Enzyme Assay. Appl Biochem Biotechnol 164, 906–917 (2011). https://doi.org/10.1007/s12010-011-9183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9183-5

Keywords

Navigation