Skip to main content
Log in

Concentration, Partial Characterization, and Immobilization of Lipase Extract from P. brevicompactum by Solid-State Fermentation of Babassu Cake and Castor Bean Cake

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One relevant limitation hindering the industrial application of microbial lipases has been attributed to their production cost, which is determined by the production yield, enzyme stability among other. The objective of this work was to evaluate the concentration and immobilization of lipase extracts from Penicillium brevicompactum obtained by solid-state fermentation of babassu cake and castor bean cake. The precipitation with ammonium sulfate 60% of saturation of crude extract obtained with babassu cake as raw material showed an enhancement in hydrolytic and esterification activities from 31.82 to 227.57 U/g and from 170.92 to 207.40 U/g, respectively. Concentrated lipase extracts showed preference to medium-chain triglycerides and fatty acids. It is shown that the enzyme activity is maintained during storage at low temperatures (4 and −10°C) for up to 30 days. Higher esterification activities were achieved when the lipase extract was immobilized in sodium alginate and activated coal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Treichel, H., Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, V. J. (2010). Food and Bioprocess Technology, 3, 182–196.

    Article  CAS  Google Scholar 

  2. Vargas, G. D. L. P., Treichel, H., Oliveira, D., Beneti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Journal of Chemical Technology and Biotechnology, 83, 47–54.

    Article  CAS  Google Scholar 

  3. Xu, X. B. (2008). European Journal of Lipid Science and Technology, 110, 863–864.

    Article  CAS  Google Scholar 

  4. Dominguez, A., Costas, M., Longo, M. A., & Sanromán, A. (2003). Biotechnological Letters, 25, 1225–1229.

    Article  CAS  Google Scholar 

  5. Carvalho, N. B., Souza, R. L., Castro, H. F., Zanin, G. M., Lima, A. S., & Soares, C. M. F. (2008). Applied Biochemistry and Biotechnology, 150, 25–32.

    Article  CAS  Google Scholar 

  6. Freire, D. M. G., Gomes, P. M., Bon, E. P. S., & Sant’Anna, G. L., Jr. (1997). Revista de Microbiologia, 28, 6–12.

    Google Scholar 

  7. Bernardes, O. L., Bevilaqua, J. V., Leal, M. C. M. R., Freire, D. M. G., & Lagnone, M. A. P. (2007). Applied Biochemistry and Biotechnology, 140, 105–114.

    Article  Google Scholar 

  8. Shu, C. H., Xu, C. J., & Lin, G. C. (2006). Process Biochemistry, 41, 734–738.

    Article  CAS  Google Scholar 

  9. Menoncin, S., Domíngues, N. M., Freire, D. M. G., Toniazzo, G., Cansian, R. L., Oliveira, J. V., et al. (2010). Food and Bioprocess Technology, 3, 461–465.

    Article  Google Scholar 

  10. Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). World Journal of Microbiology and Biotechnology, 22, 881–885.

    Article  CAS  Google Scholar 

  11. Bradoo, S., Rathi, P., Saxena, R. K., & Gupta, R. (2002). Journal of Biochemistry, 51, 115–120.

    CAS  Google Scholar 

  12. Wang, Y., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995). Journal of Fermentation and Bioengineering, 79, 433–438.

    Article  CAS  Google Scholar 

  13. Risso, F. V., Mazutti, M. A., Treichel, H., Costa, F., Maugeri, F., Rodrigues, M. I. (2009). Food and Bioprocess Technology. doi:10.1007/s11947-009-0272-1.

  14. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Google Scholar 

  15. Sun, S. Y., & Xu, Y. (2008). Process Biochemistry, 43, 219–228.

    Article  CAS  Google Scholar 

  16. Kanwar, S. S., Ghazi, I. A., Chimni, S. S., Joshi, G. K., Rao, G. V., Kaushal, R. K., et al. (2006). Protein Expression and Purification, 46, 421–428.

    Article  CAS  Google Scholar 

  17. Sharma, R., Soni, S. K., Vohra, R. M., Gupta, L. K., & Gupta, J. K. (2002). Process Biochemistry, 37, 1075–1084.

    Article  CAS  Google Scholar 

  18. Prazeres, J. N., Cruz, J. A. B., & Pastore, G. M. (2006). Brazilian Journal of Microbiology, 37, 505–509.

    Article  Google Scholar 

  19. Karadzic, I., Masui, A., Zivkovic, L. I., & Fujiwara, N. (2006). Journal of Bioscience and Bioengineering, 102, 82–89.

    Article  CAS  Google Scholar 

  20. Makhzoum, A., Owusu-Apenten, R. K., & Knapp, J. S. (1995). International Dairy Journal, 6, 459–472.

    Article  Google Scholar 

  21. Carvalho, P. O., Calafatti, S. A., Marassi, M., Silva, D. M., Contesini, F. J., & Bizaco, R. (2005). Quimica Nova, 28, 614–620.

    Article  CAS  Google Scholar 

  22. Pertersen, M., & Daniel, R. (2001). Journal of Microbiology and Biotechnology, 22, 431–435.

    Google Scholar 

  23. Labuschagne, R. B., Van Tonder, A., & Litthauer, D. (1997). Enzyme and Microbial Technology, 21, 52–58.

    Article  CAS  Google Scholar 

  24. Jesus, M. F. C. P., Branco, R. N., Sant’Anna, G. L., Jr., Freire, D. M. G., & Silva, J. G., Jr. (1999). Brazilian Journal of Chemical Engineering, 16, 113–118.

    Article  CAS  Google Scholar 

  25. Pastore, M. G., Costa, V. S. R., & Koblitaz, M. G. B. (2003). Ciência e Tecnologia de Alimentos, 23, 101–106.

    Article  Google Scholar 

  26. Abbas, H., Hiol, A., Deyris, V., & Comeau, L. (2002). Enzyme and Microbial Technology, 31, 968–975.

    Article  CAS  Google Scholar 

  27. Bacha, A. B., Gargouri, Y., Ali, Y. B., Miled, N., Reinbolt, J., & Mejdoub, H. (2005). Enzyme and Microbial Technology, 37, 309–317.

    Article  Google Scholar 

  28. Rigo, E., Ninow, J. L., Polloni, A. E., Remonatto, D., Arbter, F., & Vardanega, R. (2009). Industrial Biotechnology, 5, 53–60.

    Article  Google Scholar 

  29. Dörmo, N., Bélafi-Bakó, K., Bartha, L., Ehrenstein, U., & Gubicza, L. (2004). Biochemical Engineering Journal, 21, 229–234.

    Article  Google Scholar 

  30. Rua, M. L., & Ballesteros, A. (1994). Biotechnology Techniques, 8, 21–24.

    Article  CAS  Google Scholar 

  31. Bertolini, M. C., Schrag, J. D., Cygler, M., Thomas, D. Y., & Vernet, T. (1995). European Journal of Biochemistry, 12, 331–335.

    Google Scholar 

  32. Pencreac’h, G., & Baratti, J. C. (2001). Enzyme and Microbial Technology, 28, 473–479.

    Article  Google Scholar 

  33. Razak, C. N. A., Salleh, A. B., Musani, R., Samad, M. Y., & Basri, M. (1997). Journal of Molecular Catalysis, 3, 153–159.

    CAS  Google Scholar 

  34. Saxena, R. K., Sheoran, A., Giri, B., & Davidson, W. S. (2003). Journal of Microbiology and Methodology, 52, 1–14.

    Article  CAS  Google Scholar 

  35. Kaewthong, W., Sirisansaneeyakul, S., Prasertsan, P., & H-Kittikun, A. (2005). Process Biochemistry, 40, 1525–1530.

    Article  CAS  Google Scholar 

  36. Xu, H., Li, M., & d He, B. (1995). Enzyme and Microbial Technology, 17, 194–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank PETROBRAS for the financial support of this work and scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, M.F., Freire, D.M.G., de Castro, A.M. et al. Concentration, Partial Characterization, and Immobilization of Lipase Extract from P. brevicompactum by Solid-State Fermentation of Babassu Cake and Castor Bean Cake. Appl Biochem Biotechnol 164, 755–766 (2011). https://doi.org/10.1007/s12010-011-9171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9171-9

Keywords

Navigation