Skip to main content
Log in

The Fed-Batch Production of a Thermophilic 2-Deoxyribose-5-Phosphate Aldolase (DERA) in Escherichia coli by Exponential Feeding Strategy Control

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2-Deoxyribose-5-phosphate aldolase (DERA) catalyzes a sequential aldol reaction useful in synthetic chemistry. In this work, the effect of a feeding strategy on the production of a thermophilic DERA was investigated in fed-batch cultures of recombinant Escherichia coli BL21 (pET303-DERA008). The predetermined specific growth rate (µ set) was evaluated at 0.20, 0.15, and 0.10 h−1, respectively. The DERA concentration and volumetric productivity were associated with µ set. The cells synthesized the enzyme most efficiently at µ set = 0.15 h−1. The maximum enzyme concentration (5.12 g/L) and total volumetric productivity (0.256 g L−1 h−1) obtained were over 10 and five times higher than that from traditional batch cultures. Furthermore, the acetate concentration remained at a relatively low level, less than 0.4 g/L, under this condition which would not inhibit cell growth and target protein expression. Thus, a specific growth rate control strategy has been successfully applied to induce fed-batch cultures for the maximal production of the thermophilic 2-deoxyribose-5-phosphate aldolase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobayashi, S., Uchiro, H., Shiina, I., & Mukaiyama, T. (1993). Tetrahedron, 49, 1761–1772.

    Article  CAS  Google Scholar 

  2. Dean, S. M., Greenberg, W. A., & Wong, C. H. (2007). Advanced Synthesis & Catalysis, 349, 1308–1320.

    Article  CAS  Google Scholar 

  3. Chen, L., Dumas, D. P., & Wong, C. H. (1992). Journal of the American Chemical Society, 114, 741–748.

    Article  CAS  Google Scholar 

  4. Samland, A. K., & Sprenger, G. A. (2006). Applied Microbiology and Biotechnology, 71, 253–264.

    Article  CAS  Google Scholar 

  5. Wong, C. H., Garcia-Junceda, E., Chen, L., Blanco, O., Gijsen, H. J. M., & Steensma, D. H. (1995). Journal of the American Chemical Society, 117, 3333–3339.

    Article  CAS  Google Scholar 

  6. Liu, J. J., Hsu, C. C., & Wong, C. H. (2004). Tetrahedron Letters, 45, 2439–2441.

    Article  CAS  Google Scholar 

  7. Sakuraba, H., Yoneda, K., Yoshihara, K., Satoh, K., Kawakami, R., Uto, Y., et al. (2007). Applied and Environmental Microbiology, 73, 7427–7434.

    Article  CAS  Google Scholar 

  8. Riesenberg, D., & Guthke, R. (1999). Applied Microbiology and Biotechnology, 51, 422–430.

    Article  CAS  Google Scholar 

  9. Matsui, T., Sato, H., Yamamuro, H., Misawa, S., Shinzato, N., Matsuda, H., et al. (2008). Journal of Biotechnology, 134, 88–92.

    Article  CAS  Google Scholar 

  10. Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Chemical Engineering Science, 61, 876–885.

    Article  CAS  Google Scholar 

  11. Korz, D. J., Rinas, U., Hellmuth, K., Sanders, E. A., & Deckwer, W. D. (1995). Journal of Biotechnology, 39, 59–65.

    Article  CAS  Google Scholar 

  12. Lee, J., Lee, S. Y., Park, S., & Middelberg, A. P. J. (1999). Biotechnology Advances, 17, 29–48.

    Article  CAS  Google Scholar 

  13. Lau, J., Tran, C., Licari, P., & Galzzzo, J. (2004). Journal of Biotechnology, 110, 95–103.

    Article  CAS  Google Scholar 

  14. Kim, B. S., Lee, S. C., Lee, S. Y., Chang, Y. K., & Chang, H. N. (2004). Bioprocess and Biosystems Engineering, 26, 147–150.

    Article  CAS  Google Scholar 

  15. Yano, T., Kurokawa, M., & Nishizawa, Y. (1991). Journal of Fermentation and Bioengineering, 71, 345–349.

    Article  CAS  Google Scholar 

  16. Shiloach, J., & Fass, R. (2005). Biotechnology Advances, 23, 345–357.

    Article  CAS  Google Scholar 

  17. de Durany, O., Mas, C., & Josep, L. S. (2005). Process Biochemistry, 40, 707–716.

    Article  CAS  Google Scholar 

  18. Cheng, L. C., Hor, L. I., Wu, J. Y., & Chen, T. L. (2003). Biochemical Engineering Journal, 14, 101–107.

    Article  CAS  Google Scholar 

  19. de Jaume, P., Mas, C., & Josep, L. S. (2006). Biochemical Engineering Journal, 29, 235–242.

    Google Scholar 

  20. Yee, L., & Blanch, H. W. (1992). Nature Biotechnology, 10, 1550–1556.

    Article  CAS  Google Scholar 

  21. de Jaume, P., Mas, C., & Josep, L. S. (2008). Biochemical Engineering Journal, 41, 181–187.

    Article  CAS  Google Scholar 

  22. Durany, O., Bassett, P., Weiss, A. M. E., Cranenburgh, R. M., Ferrer, P., Josep, L. S., et al. (2005). Biotechnology and Bioengineering, 91, 460–467.

    Article  CAS  Google Scholar 

  23. Vidal, L., Ferrer, P., Alvaro, G., Benaiges, M. D., & Caminal, G. (2005). Journal of Biotechnology, 118, 75–87.

    Article  CAS  Google Scholar 

  24. Lee, S. Y. (1996). Trends Biotechnology, 16, 98–105.

    Article  Google Scholar 

  25. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  26. Konstantinov, K., Kishimoto, M., Seki, T., & Yoshida, T. (1990). Biotechnology and Bioengineering, 36, 750–758.

    Article  CAS  Google Scholar 

  27. Han, K., Lim, H. C., & Hong, J. (1992). Biotechnology and Bioengineering, 39, 663–671.

    Article  CAS  Google Scholar 

  28. Hua, Q., Yang, C., Oshima, T., Mori, H., & Shimizu, K. (2004). Applied and Environmental Microbiology, 70, 2354–2366.

    Article  CAS  Google Scholar 

  29. Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., et al. (2002). Journal of Biotechnology, 184, 152–164.

    CAS  Google Scholar 

  30. Johnston, W., Cord-Ruwisch, R., & Cooney, M. J. (2002). Bioprocess and Biosystems Engineering, 25, 111–120.

    Article  CAS  Google Scholar 

  31. Bauer, K. A., Ben Bassat, A., Dawson, M., De la Puente, V. T., & Neway, J. O. (1990). Applied and Environmental Microbiology, 56, 1256–1302.

    Google Scholar 

  32. Ozkan, P., Sariyar, B., Utkur, F. O., Akman, U., & Hortacsu, A. (2005). Biochemical Engineering Journal, 22, 167–195.

    Article  CAS  Google Scholar 

  33. Hoffman, F., & Rinas, U. (2001). Biotechnology and Bioengineering, 76, 333–340.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Anming Wang for helpful suggestions on the revised manuscript. The work was supported by the Major Science and Technology Project of Zhejiang Province (2007C01004-2), Technology Research and Development Program of Hangzhou (20090331 N03), and National Natural Science Foundation of China (20906016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, X., Wang, Q., Qiu, X. et al. The Fed-Batch Production of a Thermophilic 2-Deoxyribose-5-Phosphate Aldolase (DERA) in Escherichia coli by Exponential Feeding Strategy Control. Appl Biochem Biotechnol 162, 1423–1434 (2010). https://doi.org/10.1007/s12010-010-8924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8924-1

Keywords

Navigation