Skip to main content

Advertisement

Log in

Maximizing Algal Growth in Batch Reactors Using Sequential Change in Light Intensity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Algal growth requires optimal irradiance. In photobioreactors, optimal light requirements change during the growth cycle. At low culture densities, a high incident light intensity can cause photoinhibition, and in dense algal cultures, light penetration may be limited. Insufficient light supply in concentrated algae suspensions can create zones of dissimilar photon flux density inside the reactor, which can cause suboptimal algal growth. However, growth of dense cultures can also be impaired due to photoinhibition if cells are exposed to excessively high light intensities. In order to simultaneously maintain optimal growth and photon use efficiency, strategies for light supply must be based on cell concentrations in the culture. In this study, a lipid-producing microalgal strain, Neochloris oleoabundans, was grown in batch photobioreactors. Growth rates and biomass concentrations of cultures exposed to constant light were measured and compared with the growth kinetic parameters of cultures grown using sequentially increasing light intensities based on increasing culture densities during batch growth. Our results show that reactors operated under conditions of sequential increase in irradiance levels yield up to a 2-fold higher biomass concentration when compared with reactors grown under constant light without negatively impacting growth rates. In addition, this tailored light supply results in less overall photon use per unit mass of generated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2006). Microalgae as sustainable cell factories. Environmental Engineering and Management Journal, 5, 261–274.

    CAS  Google Scholar 

  3. Akkerman, I., Jansen, M., Rocha, J., & Wijffels, R. H. (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27, 1195–1208.

    Article  CAS  Google Scholar 

  4. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  Google Scholar 

  5. Apt, K. E., & Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35, 215–226.

    Article  Google Scholar 

  6. Vunjak-Novakovic, G., Kim, Y., Wu, X., Berzin, I., & Merchhuk, J. C. (2005). Air-lift bioreactors for algal growth on flue gas: Mathematical modelling and pilot-plant studies. Industrial and Engineering Chemistry Research, 44, 6154–6163.

    Article  CAS  Google Scholar 

  7. Doucha, J., Straka, F., & Livansky, K. (2005). Utilization of fluee gases for cultivation of microalgaae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17, 403–412.

    Article  Google Scholar 

  8. Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152.

    Article  CAS  Google Scholar 

  9. Olaizola, M. (2003). Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering, 20, 459–466.

    Article  CAS  Google Scholar 

  10. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  11. Li, J., Xu, S., & Su, W. W. (2003). Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal, 14, 51–65.

    Article  CAS  Google Scholar 

  12. Evers, E. G. (1991). A model for light-limited continuous cultures—Growth, shading and maintenance. Biotechnology and Bioengineering, 38, 254–259.

    Article  CAS  Google Scholar 

  13. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

    Article  CAS  Google Scholar 

  14. Gordon, J. M., & Polle, J. E. W. (2007). Ultrahigh bioproductivity from algae. Applied Microbiology and Biotechnology, 76, 969–975.

    Article  CAS  Google Scholar 

  15. Ogbonna, J. C., Yada, H., & Tanaka, H. (1995). Effect of cell movement by random mixing between the surface and bottom of photobioreactors on algal productivity. Journal of Fermentation and Bioengineering, 79, 152–157.

    Article  CAS  Google Scholar 

  16. Ogbonna, J. C., Yada, H., & Tanaka, H. (1995). Kinetic-study on light-limited batch cultivation of photosynthetic cells. Journal of Fermentation and Bioengineering, 80, 259–264.

    Article  CAS  Google Scholar 

  17. Eriksen, N. T. (2008). The technology of microalgal culturing. Biotechnology Letters, 30, 1525–1536.

    Article  CAS  Google Scholar 

  18. Qiang, H., & Richmond, A. (1996). Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. Journal of Applied Phycology, 8, 139–145.

    Article  Google Scholar 

  19. Zijffers, J. W. F., Janssen, M., Tramper, J., & Wijffels, R. H. (2008). Design process of an area-efficient photobioreactor. Marine Biotechnology, 10, 404–415.

    Article  CAS  Google Scholar 

  20. Gordon, J. M. (2002). Tailoring optical systems to optimized photobioreactors. International Journal of Hydrogen Energy, 27, 1175–1184. Pergamon-Elsevier Science Ltd.

    Article  CAS  Google Scholar 

  21. Meireles, L. A., Guedes, A. C., Barbosa, C. R., Azevedo, J. L., Cunha, J. P., & Malcata, F. X. (2008). On-line control of light intensity in microalgal bioreactor using a novel automatic system. Enzyme and Microbial Technology, 42, 554–559.

    Article  CAS  Google Scholar 

  22. Yoon, J. H., Shin, J. H., Ahn, E. K., & Park, T. H. (2008). High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. Journal of Microbiology and Biotechnology, 18, 918–925.

    CAS  Google Scholar 

  23. Wijanarko, A., Dianursanti, Sendjaya, A. Y., Hermansyah, H., Witarto, A. B., & Gozan, M. (2008). Enhanced Chlorella vulgaris Buitenzorg growth by photon flux density alteration in serial photobioreactors. Biotechnology and Bioprocessing Engineering, 13, 476–482.

    Article  CAS  Google Scholar 

  24. Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81, 629–636.

    Article  CAS  Google Scholar 

  25. Tornabene, T. G., Holzer, G., Lien, S., & Burris, N. (1983). Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme and Microbial Technology, 5, 435–440.

    Article  CAS  Google Scholar 

  26. Hu, Q., Guterman, H., & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51, 51–60.

    Article  CAS  Google Scholar 

  27. Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (Eds.). (2005). Standard methods for the examination of water and wastewater, 2540D total suspended solids dried. Washington: American Public Health Association.

    Google Scholar 

  28. Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (Eds.). (2005). Standard methods for the examination of water and wastewater, 4500-NO 3 I. Cadmium reduction flow injection method. Washington: American Public Health Association.

    Google Scholar 

  29. Grima, M., Fernandez, J., Fernanddez, A., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  30. Luo, H. P., & Al-Dahhan, M. H. (2004). Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnology and Bioengineering, 85, 382–393.

    Article  CAS  Google Scholar 

  31. Ogbonna, J. C., & Tanaka, H. (2000). Light requirement and photosynthetic cell cultivation—Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology, 12, 207–218.

    Article  Google Scholar 

  32. Grima, E. M., Perez, J. A. S., Camacho, F. G., Sanchez, J. L. G., & Alonso, D. L. (1993). N−3 PUFA productivity in chemostat cultures of microalgae. Applied Microbiology and Biotechnology, 38, 599–605.

    Google Scholar 

  33. Barbosa, M. J., Janssen, M., Ham, N., Tramper, J., & Wijffels, R. H. (2003). Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnology and Bioengineering, 82, 170–179.

    Article  CAS  Google Scholar 

  34. Bassham, J. A. (1980). Energy crops (Energy Farming). In A. S. Pietro (Ed.), Biochemical and photosynthetic aspects of energy production. New York: Academic.

    Google Scholar 

  35. Steele, J. H. (1965). Notes on some theoretical problems in production ecology. In C. R. Goldman (Ed.), Primary productivity in aquatic environments. Mem. Ist. Ital. Idrobiol., 18 Suppl (pp. 385–398). Berkeley: University of California Press.

    Google Scholar 

  36. Liehr, S. K., Suidan, M. T., & Eheart, J. W. (1990). A modeling study of carbon and light limitation in algal biofilms. Biotechnology and Bioengineering, 35, 233–243.

    Article  CAS  Google Scholar 

  37. Needoba, J. A., & Harrison, P. J. (2004). Influence of low light and a light:dark cycle on NO3− uptake, intracellular NO3− and nitrogen isotope fractionation by marine phytoplankton. Journal of Phycology, 40, 505–516.

    Article  CAS  Google Scholar 

  38. Philips, N. J. J., & Myers, J. (1954). Growth rate of Chlorella in flashing light. Plant Physiology, 29, 152–161.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the Utah Science Technology and Research (USTAR) initiative’s biofuels program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Viamajala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahal, S., Viamajala, S. Maximizing Algal Growth in Batch Reactors Using Sequential Change in Light Intensity. Appl Biochem Biotechnol 161, 511–522 (2010). https://doi.org/10.1007/s12010-009-8891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8891-6

Keywords

Navigation