Skip to main content
Log in

Ethanol Production from Sugarcane Bagasse by Zymomonas mobilis Using Simultaneous Saccharification and Fermentation (SSF) Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tavares, P.C.C. (2009). O bagaço de cana como alternativa energética. http://www.portalpch.com.br. Accessed 4 April 2009.

  2. Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., & Scarmino, I. (2007). Bioresource Technology, 98, 2824–2838.

    Article  CAS  Google Scholar 

  3. Santos, C., & Góes, F. (2007). Oxiteno e Dow apostam no conceito de biorrefinarias. UNICAMP NA MÍDIA 2007. http://www.unicamp.br/unicamp/canal_aberto/clipping/maio2007/clipping070521_valoreconomico.html. Accessed 23 April 2008.

  4. Mohagheghi, A., Dowe, N., Schell, D., Chou, Y., Eddy, C., & Zhang, M. (2004). Biotechnology Letters, 26, 321–25.

    Article  CAS  Google Scholar 

  5. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Science, 267, 240–243.

    Article  CAS  Google Scholar 

  6. Pereira Jr., N., Lima, M. A. G. A., Lopes, C. E., Palha, M. A. P. F., (2002). Electronic Journal of Biotechnology (53). ISSN: 0717-3458.

  7. Swings, J., & DeLey, J. (1977). Bacteriological Reviews, Baltimore, 41, 1–46.

    CAS  Google Scholar 

  8. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., & Doelle, M. (1993). Critical Reviews in Biotechnology, 13, 57–98.

    Article  CAS  Google Scholar 

  9. Rogers, P. L., Lee, K. J., Skotinich, M. L., & Tribe, D. E. (1982). Advances in Biochemical Engineering, 23, 27–84.

    Google Scholar 

  10. Betancur, G. V. (2005). MSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.

  11. Vasques, M. P. (2007). DSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.

  12. Ghose, T. K. (1987). Pure & Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  13. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.

    Google Scholar 

  14. Banik, R. M., Santhiagu, A., & Upadhyay, S. N. (2007). Bioresource Technology, 98, 792–797.

    Article  CAS  Google Scholar 

  15. Kim, J. K., Oh, B. R., Shin, H. J., Eom, C. Y., & Kim, S. W. (2008). Process Biochemistry, 43, 1308–1312.

    Article  CAS  Google Scholar 

  16. Bandaru, V. R., Somalanka, S. R., Mendu, D. R., & Madicherla, N. R. (2006). Enzyme and Microbial Technology, 38, 209–214.

    Article  CAS  Google Scholar 

  17. Golias, H., Dumsday, G. J., Stanley, G. A., & Pamment, N. B. (2002). Journal of Biotechnology, 96, 155–168.

    Article  CAS  Google Scholar 

  18. Yanase, H., Nozaki, K., & Okamoto, K. (2005). Biotechnology Letters, 27, 259–263.

    Article  CAS  Google Scholar 

  19. Rodrigues, E., & Callieri, D. A. S. (1986). Biotechnology Letters, 8, 745–748.

    Article  Google Scholar 

  20. Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd, Y., Han, M. H., & Rhee, S. K. (1986). J Ferment Technol, 64, 293–297.

    Article  CAS  Google Scholar 

  21. Patle, S., & Lal, B. (2007). Biotechnology Letters, 29(12), 1839–1843. ISSN 0141-5492 (Print) 1573-6776 (Online).

    Article  CAS  Google Scholar 

  22. Park, S. C., Kademi, A., & Baratti, J. C. (1993). Biotechnology Letters, 15, 1179–1184.

    Article  CAS  Google Scholar 

  23. Lawford, H. G., Rousseau, J. D., & Mc Millan, J. D. (1997). Applied Biochemistry and Biotechnology, 63–65, 269–286.

    Article  Google Scholar 

  24. Eklund, R., & Zacchi, G. (1995). Enzyme and Microbial Technology, 17(3), 255–259.

    Article  CAS  Google Scholar 

  25. Ma, H., Wang, Q., Qian, D., Gong, L., & Zang, W. (2009). Renewable Energy, 34, 1466–1470.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian Council for Research (CNPq), the Rio de Janeiro Foundation for Science and Technology (FAPERJ) and the Brazilian Oil Company (PETROBRAS) for scholarship and other financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei Pereira Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silveira dos Santos, D., Camelo, A.C., Rodrigues, K.C.P. et al. Ethanol Production from Sugarcane Bagasse by Zymomonas mobilis Using Simultaneous Saccharification and Fermentation (SSF) Process. Appl Biochem Biotechnol 161, 93–105 (2010). https://doi.org/10.1007/s12010-009-8810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8810-x

Keywords

Navigation