Skip to main content
Log in

Characterization of Commercial Amylases for the Removal of Filter Cake on Petroleum Wells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Drilling fluid has many functions, such as carry cuttings from the hole permitting their separation at the surface, cool and clean the bit, reduce friction between the drill pipe and wellbore, maintain the stability of the wellbore, and prevent the inflow of fluids from the wellbore and form a thin, low-permeable filter cake. Filter cake removal is an important step concerning both production and injection in wells, mainly concerning horizontal completion. The drilling fluids are typically comprised of starch, the most important component of the filter cake. A common approach to remove this filter cake is the use of acid solutions. However, these are non-specific reactants. A possible alternative is the use of enzymatic preparations, like amylases, that are able to hydrolyze starch. Wells usually operate in drastic conditions for enzymatic preparations, such as high temperature, high salt concentration, and high pressure. Thus, the main objective of this work was to characterize four enzymatic preparations for filter cake removal under open hole conditions. The results showed that high salt concentrations (204,000 ppm NaCl) in completion fluid decreased amylolytic activity. All enzymatic preparations were able to catalyze starch hydrolysis at all temperatures tested (30, 65, 80, and 95 °C). An increase of amylolytic activity was observed with the increase of pressure (100, 500 and 1,000 psi) for one commercial amylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caenn, R., & Chillingar, G. V. (1996). Journal of Petroleum Science & Engineering, 14, 221–230.

    Article  CAS  Google Scholar 

  2. Queiroz, J. (2002). In: Intern. Symp. Exhibition on formation damage control, Lafayette, USA, SPE 73713.

  3. Battistel, E., Bianchi, D., Fornaroli, M., Guglielmetti, G., Europa, P. & Cobianco, S. (2005). In: European Formation Damage Conference, Sheveningen, The Netherlands, SPE 94702.

  4. Beall, B. B., Brannon, H. D., TjonJoePin, R. M., & O’Driscoll, K. (1996). In: SPE Annual Technical Conference & Exhibition, Denver, USA, SPE 36429.

  5. Kameda, E., Queiroz, J. C., Langone, M. A. P., & Coelho, M. A. Z. (2007). Journal of Petroleum Science & Engineering, 59, 263–270.

    Article  CAS  Google Scholar 

  6. Hansen, J. E., & Jiang, P. (1999). In: SPE International Symposium on Oilfield Chemistry, Houston, Texas, SPE 50709.

  7. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Process Biochemistry, 38, 1599–1616.

    Article  CAS  Google Scholar 

  8. Sarubbo, L. A., Luna, J. M., & Campos-Takashi, G. M. (2006). Electronic Journal of Biotechnology, 9, 400.

    Google Scholar 

  9. Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 53, 224.

    CAS  Google Scholar 

  10. Toledo, A. L., Severo, J. B., Jr., Souza, R. R., Campos, E. S., Santana, J. C. C., & Tambourgi, E. B. (2007). Journal of Chromatography B, 846, 51–56.

    Article  CAS  Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  12. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  13. Li, H., Chi, Z., Wang, X., Duan, X., Ma, L., & Gao, L. (2007). Enzyme and Microbial Technology, 40, 1006–1012.

    Article  CAS  Google Scholar 

  14. Ezeiji, T. C., & Bahl, H. (2006). Journal of Biotechnology, 125, 27–38.

    Article  Google Scholar 

  15. Asghaer, M., Asad, M. J., Rahman, S. U., & Legge, R. L. (2007). Journal of Food Engineering, 79, 950–955.

    Article  Google Scholar 

  16. Lopez, C., Torrado, A., Fuciños, P., Guerra, N. P., & Pastrana, L. (2006). Enzyme and Microbial Technology, 39, 252–258.

    Article  CAS  Google Scholar 

  17. Aguilar, G., Morlon-Guyot, J., Trejo-Aguilar, B., & Guyot, J. P. (2000). Enzyme and Microbial Technology, 27, 406–413.

    Article  CAS  Google Scholar 

  18. Boonyaratanakornkit, B. B., Park, C. B., & Clark, D. S. (2002). Biochimica et Biophysica Acta, 1595, 235–249.

    CAS  Google Scholar 

  19. Fukuda, M., & Kunugi, S. (1984). European Journal of Biochemistry, 142, 565–570.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given by CNPq, FAPERJ, FINEP, CAPES as well as the collaboration with CENPES/Petrobras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Antunes Pereira Langone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyaw, N., de Mesquita, R.F., Kameda, E. et al. Characterization of Commercial Amylases for the Removal of Filter Cake on Petroleum Wells. Appl Biochem Biotechnol 161, 171–180 (2010). https://doi.org/10.1007/s12010-009-8773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8773-y

Keywords

Navigation