Skip to main content
Log in

Fermentation of Sugarcane Bagasse and Chicken Manure to Calcium Carboxylates under Thermophilic Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse and chicken manure were anaerobically fermented to carboxylic acids using a mixed culture of marine microorganisms at 55 °C. Using the MixAlco process— an example of consolidated bioprocessing— the resulting carboxylate salts can be converted to mixed alcohol fuels or gasoline. To enhance digestibility, sugarcane bagasse was lime pretreated with 0.1 g Ca(OH)2/g dry biomass at 100 °C for 2 h. Four-stage countercurrent fermentation of 80% sugarcane bagasse/20% chicken manure was performed at various volatile solids (VS) loading rates and liquid residence times. Calcium carbonate was used as a buffer during fermentation. The highest acid productivity of 0.79 g/(L day) occurred at a total acid concentration of 21.5 g/L. The highest conversion (0.59 g VS digested/g VS fed) and yield (0.18 g total acids/g VS fed) occurred at a total acid concentration of 15.5 g/L. The continuum particle distribution model (CPDM) predicted the experimental total acid concentrations and conversions at an average error of 10.14% and 12.68%, respectively. CPDM optimizations show that high conversion (>80%) and total acid concentration of 21.3 g/L are possible with 300 g substrate/(L liquid), 30 days liquid residence time, and 3 g/(L day) solid loading rate. Thermophilic fermentation has a higher acetate content (∼63 wt%) than mesophilic fermentation (∼39 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Aceq:

acetic acid equivalent concentration (grams of acetic acid equivalents/liter)

a :

parameter constant (grams of acetic acid equivalents/liter)

b :

parameter constant (grams of acetic acid equivalents/(liter day))

c :

parameter constant (day−1)

e :

parameter constant (grams of acetic acid equivalent/grams of VS day)

f :

parameter constant (dimensionless)

g :

parameter constant (liter/grams of total acid)1/h

h :

parameter constant (dimensionless)

LRT:

liquid residence time (day)

p :

total acid productivity (grams of total acid/(liter day))

r :

reaction rate (grams of acetic acid equivalents/(liter day))

\( \hat r \) :

specific rate (grams of acetic acid equivalents produced/(grams of VS day))

\( {\hat r_{pred}} \) :

predicted specific rate (grams of acetic acid equivalents produced/(grams of VS day))

S o :

initial substrate concentration (grams of VS/liter)

s :

selectivity (grams of total acid produced/grams of VS digested)

t :

time (day)

VSLR:

volatile solids loading rate (grams of VS/(liter day))

x :

conversion (grams of VS digested/grams of VS fed)

α:

acetic acid equivalent concentration (mole of acetic acid equivalents/liter)

ϕ :

the ratio of total grams of carboxylic acid to total grams of acetic acid equivalents (grams of total acid/grams of acetic acid equivalents)

σ :

selectivity (grams of acetic acid equivalents produced/grams of VS digested)

References

  1. Somerville, C. (2006). Science, 312, 1277.

    Article  CAS  Google Scholar 

  2. Aiello-Mazzarri, C., Agbogbo, F. K., & Holtzapple, M. T. (2006). Bioresource Technology, 97, 47–56.

    Article  CAS  Google Scholar 

  3. Chan, W. N., & Holtzapple, M. T. (2003). Applied Biochemistry and Biotechnology, 111, 93–112.

    Article  CAS  Google Scholar 

  4. Shanmugam, K. T., & Ingram, L. O. (2008). Journal of Molecular Microbiology and Biotechnology, 15, 8–15.

    Article  CAS  Google Scholar 

  5. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  6. Aden, A., & Foust, T. (2009). Cellulose, 16, 535–545.

    Article  CAS  Google Scholar 

  7. Lynd, L. R., Elander, R. T., & Wyman, C. E. (1996). Applied Biochemistry and Biotechnology, 57–58, 741–761.

    Article  Google Scholar 

  8. Junker, B., Lester, M., Leporati, J., Schmitt, J., Kovatch, M., Borysewicz, S., et al. (2006). Journal of Bioscience and Bioengineering, 102, 251–268.

    Article  CAS  Google Scholar 

  9. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  10. Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C. M., et al. (1999). Applied Biochemistry and Biotechnology, 77–79, 609–631.

    Article  Google Scholar 

  11. Holtzapple, M. T., & Granda, C. B. (2009). Applied Biochemistry and Biotechnology, 156, 95–106.

    Article  Google Scholar 

  12. Ross, M. K., & Holtzapple, M. T. (2001). Applied Biochemistry and Biotechnology, 94, 111–126.

    Article  CAS  Google Scholar 

  13. Aiello-Mazzarri, C., Coward-Kelly, G., Agbogbo, F. K., & Holtzapple, M. T. (2005). Applied Biochemistry and Biotechnology, 127, 79–93.

    Article  CAS  Google Scholar 

  14. Thanakoses, P., Black, A. S., & Holtzapple, M. T. (2003). Biotechnology and Bioengineering, 83, 191–200.

    Article  CAS  Google Scholar 

  15. Domke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Bioresource Technology, 91, 41–51.

    Article  CAS  Google Scholar 

  16. Yokoyama, H., Waki, M., Moriya, N., Yasuda, T., Tanaka, Y., & Haga, K. (2007). Applied Microbiology and Biotechnology, 74, 474–483.

    Article  CAS  Google Scholar 

  17. Agbogbo, F. K., & Holtzapple, M. T. (2007). Bioresource Technology, 98, 1586–1595.

    Article  CAS  Google Scholar 

  18. Thanakoses, P., Mostafa, N. A., & Holtzapple, M. T. (2003). Applied Biochemistry and Biotechnology, 105–108, 523–546.

    Article  Google Scholar 

  19. Talabardon, M., Schwitzguebel, J. P., & Peringer, P. (2000). Journal of Biotechnology, 76, 83–92.

    Article  CAS  Google Scholar 

  20. Fu, Z. (2007). PhD Dissertation, Texas A&M University, College station, TX.

  21. Chang, V. S., Nagwani, M., & Holtzapple, M. T. (1998). Applied Biochemistry and Biotechnology, 74, 135–159.

    Article  CAS  Google Scholar 

  22. Thanakoses, P. (2002). PhD Dissertation, Texas A&M Univeristy, College station, TX.

  23. Ross, M K. (1998). PhD Dissertation, Texas A&M University, College station, TX.

  24. South, C. R., & Lynd, L. R. (1994). Applied Biochemistry and Biotechnology, 45–46, 467–481.

    Article  Google Scholar 

  25. Ingram, L. O., Gomez, P. F., Lai, X., Moniruzzaman, M., Wood, B. E., Yomano, L. P., et al. (1998). Biotechnology and Bioengineering, 58, 204–214.

    Article  CAS  Google Scholar 

  26. Um, B. H., & Hanley, T. R. (2008). Applied Biochemistry and Biotechnology, 145, 29–38.

    Article  CAS  Google Scholar 

  27. Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y., & Zhang, S. (2008). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8306-0.

    Google Scholar 

  28. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Current Opinion in Biotechnology, 16, 577–583.

    Article  CAS  Google Scholar 

  29. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  30. Wang, Z. W., & Chen, S. (2009). Applied Microbiology and Biotechnology, 83, 1–18.

    Article  CAS  Google Scholar 

  31. Mcallister, T. A., Bae, H. D., Jones, G. A., & Cheng, K. J. (1994). Journal of Animal Science, 72, 3004–3018.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Holtzapple, M.T. Fermentation of Sugarcane Bagasse and Chicken Manure to Calcium Carboxylates under Thermophilic Conditions. Appl Biochem Biotechnol 162, 561–578 (2010). https://doi.org/10.1007/s12010-009-8748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8748-z

Keywords

Navigation