Skip to main content

Advertisement

Log in

Potential of biofilm-based biofuel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm–substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal–bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adisasmito S, Mihaltz P, Karim MN, Tengerdy RP (1987) Preparation of fungal starter culture in liquid fluidized bed reactor. Biotechnol Tech 1:175–180

    CAS  Google Scholar 

  • Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr Genet 41:275–281

    CAS  PubMed  Google Scholar 

  • Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T (1960) On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol 4:219–27

    CAS  PubMed  Google Scholar 

  • Akin DE (1976) Ultrastructure of rumen bacterial attachment to forage cell walls. Appl Environ Microbiol 31:562–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  • Archer GL, Bosilevac JM (2001) Microbiology—signaling antibiotic resistance in staphylococci. Science 291:1915–1916

    CAS  PubMed  Google Scholar 

  • Arvin E, Harremoes P (1990) Concepts and models for biofilm reactor performance. Water Sci Technol 22:171–192

    CAS  Google Scholar 

  • Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M (2008) Direct visualization of horizontal gene transfer. Science 319:1533–1536

    CAS  PubMed  Google Scholar 

  • Bae JW, Rhee SK, Hyun SH, Kim IS, Lee ST (2000) Layered structure of granules in upflow anaerobic sludge blanket reactor gives microbial populations resistance to metal ions. Biotechnol Lett 22:1935–1940

    CAS  Google Scholar 

  • Baptista CMSG, Coias JMA, Oliveira ACM, Oliveira NMC, Rocha JMS, Dempsey MJ, Lannigan KC, Benson PS (2006) Natural immobilisation of microorganisms for continuous ethanol production. Enzyme Microb Technol 40:127–131

    CAS  Google Scholar 

  • Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJG, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    CAS  PubMed  Google Scholar 

  • Barbotin JN, Mater D, Craynest M, Saucedo JEN, Truffaut N, Thomas D (1998) Immobilized cells: plasmid stability and plasmid transfer. Prog Biotechnol 15:591–602

    CAS  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    CAS  PubMed  Google Scholar 

  • Beech IB, Coutinho CMLM (2003) Biofilms on corroding materials. In: Lens P, O'Flaherty V, Moran AP, Stoodley P, Mahony T (eds) Biofilms in medicine, industry and environmental biotechnology: characteristics, analysis and control. IWA, London, pp 120–121

    Google Scholar 

  • Bernal VM, Smajda CH, Smith JL, Stanley DW (1987) Interactions in protein/polysaccharide/calcium gels. J Food Sci 52:1121–1136

    CAS  Google Scholar 

  • Brown SP, Johnstone RA (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc Biol Sci 268:961–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MRW, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics—a growth-rate related effect. J Antimicrob Chemother 22:777–780

    CAS  PubMed  Google Scholar 

  • Cabrera Padilla RY, Miqueleto AP, Zaiat M, Kwong WH (2008) Heterogeneous modeling of an anaerobic sequencing batch biofilm reactor (ASBBR). J Environ Eng Sci 7:319–325

    CAS  Google Scholar 

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    CAS  PubMed  Google Scholar 

  • Carvalho G, Meyer RL, Yuan ZG, Keller J (2006) Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. Enzyme Microb Technol 39:1392–1398

    CAS  Google Scholar 

  • Castillo MR, Gutierrezcorrea M, Linden JC, Tengerdy RP (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme-production. Biotechnol Lett 16:967–972

    CAS  Google Scholar 

  • Chamier AC (1985) Cell-wall-degrading enzymes of aquatic hyphomycetes—a review. Bot J Linn Soc 91:67–81

    Google Scholar 

  • Chanakya HN, Srikumar KG, Anand V, Modak J, Jagadish KS (1999) Fermentation properties of agro-residues, leaf biomass and urban market garbage in a solid phase biogas fermenter. Biomass Bioenergy 16:417–429

    Google Scholar 

  • Chau TL, Guillan A, Roca E, Nunez MJ, Lema JM (2000) Enhancement of plasmid stability and enzymatic expression by immobilising recombinant Saccharomyces cerevisiae. Biotechnol Lett 22:1247–1250

    CAS  Google Scholar 

  • Chen XA, Xu ZN, Cen PL, Wong WKR (2006) Enhanced plasmid stability and production of hEGF by immobilized recombinant E. coli JM101. Biochem Eng J 28:215–219

    CAS  Google Scholar 

  • Cheng KJ, Fay JP, Howarth RE, Costerton JW (1980) Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl Environ Microbiol 40:613–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KJ, Fay JP, Coleman RN, Milligan LP, Costerton JW (1981) Formation of bacterial microcolonies on feed particles in the rumen. Appl Environ Microbiol 41:298–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104:4489–4494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB, Eberl L, Moller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chrost RJ (1989) Characterization and significance of beta-glucosidase activity in lake water. Limnol Oceanogr 34:660–672

    CAS  Google Scholar 

  • Chynoweth DP, Haley P, Owens J, Teixeira A, Townsend T, Xu Q, Choi HL (2003) Anaerobic composting for recovery of nutrients, compost, and energy from solid waste during space missions. In: Pullammanappallil P, McComb A, Diaz LF, Bidlingmaier W (eds) Proceedings of the 4th international conference of ORBIT association on biological processing of organics. ORBIT , Perth, pp 126–135

    Google Scholar 

  • Ciesarova Z, Domeny Z, Smogrovicova D, Patkova J, Sturdik E (1998) Comparison of ethanol tolerance of free and immobilized Saccharomyces uvarum yeasts. Folia Microbiol 43:55–58

    CAS  Google Scholar 

  • Confer DR, Logan BE (1997) Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures.1. Bovine serum albumin. Water Res 31:2127–2136

    CAS  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez S, Teixeira P, Oliveira R, Mota M (2008) Rotating biological contactors: a review on main factors affecting performance. Rev Environ Sci Biotechnol 7:155–172

    CAS  Google Scholar 

  • Costerton JW (1992) Pivotal role of biofilms in the focused attack of bacteria on insoluble substrates. Int Biodeterior Biodegrad 30:123–133

    Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilm in nature and disease. Annu Rev Microbiol 41:435–464

    CAS  PubMed  Google Scholar 

  • Craig WM, Broderick GA, Ricker DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J Nutr 117:56–62

    CAS  PubMed  Google Scholar 

  • Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to Bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci 61:97–109

    PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    PubMed  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF, Kalachikov S, Shuman HA (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726

    PubMed  PubMed Central  Google Scholar 

  • de Kreuk M, Heijnen JJ, van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90:761–769

    PubMed  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    PubMed  Google Scholar 

  • de Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Luth P, Oostra J, Ravensberg WJ, Renaud R, Rinzema A, Weber FJ, Whipps JM (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56:58–68

    PubMed  Google Scholar 

  • Desimone MF, Degrossi J, D'Aquino M, Diaz LE (2002) Ethanol tolerance in free and sol-gel immobilised Saccharomyces cerevisiae. Biotechnol Lett 24:1557–1559

    CAS  Google Scholar 

  • Doelle HW, Mitchell DA, Rolz CE (1992) Solid state cultivation. Elsevier, New York

    Google Scholar 

  • Duenas R, Tengerdy RP, Gutierrezcorrea M (1995) Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microbiol Biotechnol 11:333–337

    CAS  PubMed  Google Scholar 

  • Durrant AJ, Wood DA, Cain RB (1991) Lignocellulose biodegradation by Agaricus-bisporus during solid substrate fermentation. J Gen Microbiol 137:751–755

    CAS  Google Scholar 

  • Evans LV (2000) Biofilms: recent advances in their study and control. Harwood Academic, University of Buckingham, London

    Google Scholar 

  • Fan ZL, McBride JE, van Zyl WH, Lynd LR (2005) Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes. Biotechnol Bioeng 92:35–44

    CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  PubMed  Google Scholar 

  • Forsberg CW, Lam K (1977) Use of adenosine 5′-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl Environ Microbiol 33:528–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francoeur SN, Wetzel RG, Neely RK (2001) New spatially explicit method for detecting extracellular protease activity in biofilms. Appl Environ Microbiol 67:4329–4334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frolund B, Griebe T, Nielsen PH (1995) Enzymatic-activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43:755–761

    CAS  PubMed  Google Scholar 

  • Fujita M, Ike M, Hashimoto S (1991) Feasibility of wastewater treatment using genetically engineered microorganisms. Water Res 25:979–984

    CAS  Google Scholar 

  • Gauss WF, Suzuki S, Takagi M (1976) Manufacture of alcohol from cellulosic materials using plural ferments. US Patent No. 3990944

  • Geesey GG, Van Ommen Kloeke F (2005) Extracellular enzymes associated with microbial flocs from activated sludge of wastewater treatment systems. In: Droppo IG, Leppard GG, Milligan T, Liss SN (eds) Flocculation in natural and engineering environmental processes. CRC Press. Boca Raton, FL, pp 295–316

    Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101

    CAS  Google Scholar 

  • Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445

    CAS  PubMed  Google Scholar 

  • Ghigo JM (2003) Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol 154:1–8

    CAS  PubMed  Google Scholar 

  • Gilbert P, Brown MR (1978) Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudomonas aeruginosa and its resistance to 3- and 4-chlorophenol. J Bacteriol 133:1066–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano C, Khan AW (1985) Conversion of cellulose to sugars by resting cells of a mesophilic anaerobe Bacteroides cellulosolvens. Biotechnol Bioeng 27:980–983

    CAS  PubMed  Google Scholar 

  • Gordon GL, Phillips MW (1989) Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Appl Environ Microbiol 55:1703–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon GLR, Phillips MW (1998) The role of anaerobic gut fungi in ruminants. Nutr Res Rev 11:133–168

    CAS  PubMed  Google Scholar 

  • Grady CPL, Daigger GT, Lim HC, NetLibrary Inc (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Greaves H (1971) The bacterial factor in wood decay. Wood Sci Technol 5:6–16

    Google Scholar 

  • Grootjen DRJ, Meijlink LHHM, Vleesenbeek R, Vanderlans RGJM, Luyben KCAM (1991) Cofermentation of glucose and xylose with immobilized Pichia-stipitis in combination with Saccharomyces-cerevisiae. Enzyme Microb Technol 13:530–536

    CAS  Google Scholar 

  • Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    CAS  PubMed  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol Lett 20:45–47

    CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1999) Cellulolytic enzyme production by fungal mixed culture solid substrate fermentation. Agro Food Industry Hi-Tech 10:6–8

    Google Scholar 

  • Gutierrez-Correa M, Villena GK (2003) Surface adhesion fermentation: a new fermentation category. Rev Peru Biol 10:113–124

    Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    CAS  PubMed  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiol UK 146:2395–2407

    CAS  Google Scholar 

  • Higuchi Y, Ohashi A, Imachi H, Harada H (2005) Hydrolytic activity of alpha-amylase in anaerobic digested sludge. Water Sci Technol 52:259–266

    CAS  PubMed  Google Scholar 

  • Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    CAS  PubMed  Google Scholar 

  • Hu Z, Gagnon GA (2006) Factors affecting recirculating biofilters (RBFs) for treating municipal wastewater. J Environ Eng Sci 5:349–357

    CAS  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Imran M, Jones D, Smith H (2005) Biofilms and the plasmid maintenance question. Math Biosci 193:183–204

    CAS  PubMed  Google Scholar 

  • Ingram LO, Vreeland NS, Eaton LC (1980) Alcohol tolerance in Escherichia-coli. Pharmacol Biochem Behav 13:191–195

    CAS  PubMed  Google Scholar 

  • Inloes DS, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Ethanol-production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl Environ Microbiol 46:264–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Curr Genet 37:373–379

    CAS  PubMed  Google Scholar 

  • Ito K, Kimizuka A, Okazaki N, Kobayashi S (1989) Mycelial distribution in rice koji. J Ferment Bioeng 68:7–13

    Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    CAS  PubMed  Google Scholar 

  • Jaeger KE, Schneidinger B, Liebeton K, Haas D, Reetz MT, Philippou S, Gerritse G, Ransac S, Dijkstra BW (1996) Lipase of Pseudomonas aeruginosa. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. ASM, Washington DC, pp 319–330

    Google Scholar 

  • James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262

    CAS  Google Scholar 

  • Jirku V (1999) Whole cell immobilization as a means of enhancing ethanol tolerance. J Ind Microbiol Biotechnol 22:147–151

    CAS  Google Scholar 

  • Jurgensen MF, Larsen MJ, Wolosiewicz M, Harvey AE (1989) A comparison of dinitrogen fixation rates in wood litter decayed by white-rot and brown-rot fungi. Plant Soil 115:117–122

    CAS  Google Scholar 

  • Kazuhisa M (1997) Renewable biological systems for alternative sustainable energy production. Food & Agriculture Organization of the United Nations, Osaka

    Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    CAS  PubMed  Google Scholar 

  • Kenyon WJ, Esch SW, Buller CS (2005) The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation. Antonie Van Leeuwenhoek 87:143–148

    CAS  PubMed  Google Scholar 

  • Krisch J, Szajani B (1997) Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol Lett 19:525–528

    CAS  Google Scholar 

  • Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    CAS  PubMed  Google Scholar 

  • Kumar PKR, Schugerl K (1990) Immobilization of genetically engineered cells—a new strategy for higher stability. J Biotechnol 14:255–272

    CAS  PubMed  Google Scholar 

  • Kundu S, Ghose TK, Mukhopadhyay SN (1983) Bioconversion of cellulose into ethanol by Clostridium-thermocellum-product inhibition. Biotechnol Bioeng 25:1109–1126

    CAS  PubMed  Google Scholar 

  • Laukevics JJ, Apsite AF, Viesturs US, Tengerdy RP (1985) Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol Bioeng 27:1687–1691

    CAS  PubMed  Google Scholar 

  • Lawrence JR, Wolfaardt GM, Korber DR (1994) Determination of diffusion-coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol 60:1166–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Kim KJ (1995) Effect of water activity on enzyme hydration and enzyme reaction-rate in organic-solvents. J Ferment Bioeng 79:473–478

    CAS  Google Scholar 

  • Lelieveld HLM (1982) The use of continuous cultures for selection and isolation of microorganisms producing extracellular enzymes adapted to extreme environments. Biotechnol Bioeng 24:1419–1425

    CAS  PubMed  Google Scholar 

  • Levin BR (2004) Noninherited resistance to antibiotics. Science 305:1578–1579

    CAS  PubMed  Google Scholar 

  • Li XF, Gao FS, Hua ZZ, Du GC, Chen J (2005) Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Sep Purif Technol 46:19–25

    CAS  Google Scholar 

  • Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    CAS  PubMed  Google Scholar 

  • Liu Y, Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563

    CAS  PubMed  Google Scholar 

  • Liu WT, Chan OC, Fang HHP (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36:1767–1775

    CAS  PubMed  Google Scholar 

  • Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673

    CAS  PubMed  Google Scholar 

  • Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65:143–148

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang ZW, Qin L, Liu YQ, Tay JH (2005a) Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl Microbiol Biotechnol 67:26–32

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang ZW, Tay JH (2005b) A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnol Adv 23:335–44

    CAS  PubMed  Google Scholar 

  • Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell, Oxford, pp 113–138

    Google Scholar 

  • Logan BE, Hermanowicz SW, Parker DS (1987) A fundamental model for trickling filter process design. J WPCF 59:1029–1042

    CAS  Google Scholar 

  • Lu YP, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98:641–654

    PubMed  Google Scholar 

  • Lu YP, Zhang YHP, Lynd LR (2006) Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A 103:16165–16169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    CAS  PubMed  Google Scholar 

  • Maglione G, Russell JB, Wilson DB (1997) Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 63:665–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TFC, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • Mandavilli SN (2000) Performance characteristics of an immobilized enzyme reactor producing ethanol from starch. J Chem Eng Jpn 33:886–890

    CAS  Google Scholar 

  • Manz B, Volke F, Goll D, Horn H (2003) Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI). Biotechnol Bioeng 84:424–432

    CAS  PubMed  Google Scholar 

  • Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37:98–107

    CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I beta. Carbohydr Res 341:138–152

    CAS  PubMed  Google Scholar 

  • McAllister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72:3004–3018

    CAS  PubMed  Google Scholar 

  • Mcsweeney CS, Dulieu A, Katayama Y, Lowry JB (1994) Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum. Appl Environ Microbiol 60:2985–2989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melin E, Shieh WK (1992) Continuous ethanol production from glucose using Saccharomyces cerevisiae immobilized on fluidized microcarriers. Chem Eng J 50:B17–B22

    CAS  Google Scholar 

  • Metcalf and Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  • Meyer-Reil LA (1990) Microorganisms in marine sediments: considerations concerning activity measurements. Arch Hydrobiol Beih Ergebn Limnol 34:1–6

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225

    CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Curr Opin Biotechnol 14:255–261

    CAS  PubMed  Google Scholar 

  • Mosquera-Corral A, Montras A, Heijnen JJ, van Loosdrecht MCM (2003) Degradation of polymers in a biofilm airlift suspension reactor. Water Res 37:485–492

    CAS  PubMed  Google Scholar 

  • Murray AC, Woodward S (2003) In vitro interactions between bacteria isolated from Sitka spruce stumps and Heterobasidion annosum. For Pathol 33:53–67

    Google Scholar 

  • Nagel FJ, Van As H, Tramper J, Rinzema A (2002) Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae. Biotechnol Bioeng 79:653–663

    CAS  PubMed  Google Scholar 

  • Nagodawithana TW, Castellano C, Steinkraus KH (1974) Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl Microbiol 28:383–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildyal NP (1994) Mechanism of solid particle degradation by Aspergillus niger in solid-state fermentation. Process Biochem 29:545–551

    CAS  Google Scholar 

  • Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildyal NP (1996) Substrate particle size reduction by Bacillus coagulans in solid-state fermentation. Enzyme Microb Technol 18:121–125

    CAS  Google Scholar 

  • Nopharatana A, Clarke WP, Pullammanappallil PC, Silvey P, Chynoweth DP (1998) Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste. Bioresour Technol 64:169–174

    CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    CAS  PubMed  Google Scholar 

  • Oostra J, le Comte EP, van den Heuvel JC, Tramper J, Rinzema A (2001) Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 75:13–24

    CAS  PubMed  Google Scholar 

  • O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    CAS  Google Scholar 

  • Parawira W, Murto M, Read JS, Mattiasson B (2005) Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem 40:2945–2952

    CAS  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    CAS  PubMed  Google Scholar 

  • Pollice A, Brookes A, Jefferson B, Judd S (2005) Sub-critical flux fouling in membrane bioreactors—a review of recent literature. Desalination 174:221–230

    CAS  Google Scholar 

  • Porter P, Singleto AG (1971) Digestion of carbohydrates of hay in small ruminants. Br J Nutr 26:75–88

    CAS  PubMed  Google Scholar 

  • Priest FG (1992) Enzymes, extracellular. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego, pp 81–93

    Google Scholar 

  • Qi R, Yang K, Yu ZX (2007) Treatment of coke plant wastewater by SND fixed biofilm hybrid system. J Environ Sci 19:153–159

    CAS  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    PubMed  PubMed Central  Google Scholar 

  • Rahardjo YS, Weber FJ, le Comte EP, Tramper J, Rinzema A (2002) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 78:539–544

    PubMed  Google Scholar 

  • Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–177

    CAS  PubMed  Google Scholar 

  • Rainey PB, Cole ALJ, Fermor TR, Wood DA (1990) A model system for examining involvement of bacteria in basidiome initiation of Agaricus-bisporus. Mycol Res 94:191–195

    Google Scholar 

  • Raymond J, Blankenship RE (2003) Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci U S A 100:7419–7420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal communities in the decay of wood. Adv Microb Ecol 10:115–166

    Google Scholar 

  • Romani AM, Guasch H, Munoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47:316–328

    CAS  PubMed  Google Scholar 

  • Romani AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric matrix enzymes during biofilm formation. Microb Ecol 56:427–436

    CAS  PubMed  Google Scholar 

  • Roukas T (1996) Continuous ethanol production from nonsterilized carob pod extract by immobilized Saccharomyces cerevisiae on mineral kissiris using a two-reactor system. Appl Biochem Biotechnol 59:299–307

    CAS  PubMed  Google Scholar 

  • Ryoo D, Murphy VG, Karim MN, Tengerdy RP (1991) Evaporative temperature and moisture control in a rocking reactor for solid substrate fermentation. Biotechnol Tech 5:19–24

    Google Scholar 

  • Sand W, Gehrke T (1999) Analysis and function of the EPS from the strong acidophile Thiobacillus ferrooxidans. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Heidelberg, pp 127–141

    Google Scholar 

  • Sargantanis J, Karim MN, Murphy VG, Ryoo D, Tengerdy RP (1993) Effect of operating-conditions on solid substrate fermentation. Biotechnol Bioeng 42:149–158

    CAS  PubMed  Google Scholar 

  • Sato K, Sudo S (1999) Small scale solid state fermentations. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM, Washington DC, pp 61–79

    Google Scholar 

  • Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 73:7300–7307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Hulshoff Pol LW (eds) Granular anaerobic sludge: microbiology and technology. Pudoc, Wageningen, pp 5–17

    Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62:4641–4647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen P, Dentel SK (1998) Simultaneous nitrification–denitrification in a fluidized bed reactor. Water Sci Technol 38:247–254

    CAS  Google Scholar 

  • Sen D, Randall CW (2008) Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part I: semi-empirical model development. Water Environ Res 80:439–453

    CAS  PubMed  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008) Fungal–bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    CAS  Google Scholar 

  • Sharon N, Lis H (1993) Carbohydrates in cell recognition. Sci Am 268:82–89

    CAS  PubMed  Google Scholar 

  • Shen XL, Xia LM (2006) Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation. Appl Biochem Biotechnol 133:251–262

    CAS  PubMed  Google Scholar 

  • Sheoran A, Yadav BS, Nigam P, Singh D (1998) Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1. J Basic Microbiol 38:123–128

    CAS  PubMed  Google Scholar 

  • Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281

    CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1990) Enzymatic and chemical-analysis of particulate organic-matter from a boreal river. Freshw Biol 23:301–309

    CAS  Google Scholar 

  • Sitton OC, Magruder GC, Book NL, Gaddy JL (1980) Comparison of immobilized cell reactor and CSTR for ethanol production. Biotechnol Bioeng 22:213–235

    Google Scholar 

  • Song H, Clarke WP, Blackall LL (2005) Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnol Bioeng 91:369–378

    CAS  PubMed  Google Scholar 

  • Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    CAS  PubMed  Google Scholar 

  • Sree NK, Sridhar M, Suresh K, Rao LV (1999) High alcohol production by solid substrate fermentation from starchy substrates using thermotolerant Saccharomyces cerevisiae. Bioprocess Eng 20:561–563

    CAS  Google Scholar 

  • Stephanopoulos G (2002) Metabolic engineering: perspective of a chemical engineer. AIChE J 48:920–926

    CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  PubMed  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. Freeman, New York

    Google Scholar 

  • te Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel KAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid-state and submerged fermentations—progress report on a multi-disciplinary project. FEMS Yeast Res 2:245–248

    Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    CAS  Google Scholar 

  • Tengerdy RP, Rho WH, Mohagheghi AM (1991) Liquid fluidized-bed starter culture of Trichoderma-reesei for cellulase production. Appl Biochem Biotechnol 27:195–204

    CAS  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic-digestion—role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109

    PubMed  PubMed Central  Google Scholar 

  • Tyagi RD, Gupta SK, Chand S (1992) Process engineering studies on continuous ethanol-production by immobilized Saccharomyces cerevisiae. Process Biochem 27:23–32

    CAS  Google Scholar 

  • Uversky VN, Kataeva IA (2006) Cellulosome. Nova Science, New York

    Google Scholar 

  • Valach M, Navratil M, Horvathova V, Zigova J, Sturdik E, Hrabarova E, Gemeiner P (2006) Efficiency of a fixed-bed and a gas-lift three-column reactor for continuous production of ethanol by pectate- and alginate-immobilized Saccharomyces cerevisiae cells. Chem Pap Chem Zvesti 60:154–159

    CAS  Google Scholar 

  • Van Soest PJ (1975) Physico-chemical aspects of fiber digestion. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. New England Publication, Armidale, pp 351–365

    Google Scholar 

  • Varzakas T (1998) Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741–747

    CAS  Google Scholar 

  • Vega JL, Clausen EC, Gaddy JL (1988) Biofilm reactors for ethanol-production. Enzyme Microb Technol 10:390–402

    CAS  Google Scholar 

  • Vetter YA, Deming JW, Jumars PA, Krieger-Brockett BB (1998) A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol 36:75–92

    CAS  PubMed  Google Scholar 

  • Vidmantiene D, Juodeikiene G, Basinskiene L (2006) Technical ethanol production from waste of cereals and its products using a complex enzyme preparation. J Sci Food Agric 86:1732–1736

    CAS  Google Scholar 

  • Vilain S, Brozel VS (2006) Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 5:1924–1930

    CAS  PubMed  Google Scholar 

  • Villena GK, Gutierrez-Correa M (2003) Aspergillus niger biofilms for cellulases production: some structural and physiological aspects. Rev Peru Biol 10:78–87

    Google Scholar 

  • Villena GK, Gutierrez-Correa M (2006) Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett Appl Microbiol 43:262–268

    CAS  PubMed  Google Scholar 

  • Villena GK, Gutierrez-Correa M (2007) Production of lignocellulolytic enzymes by Aspergillus niger biofilms at variable water activities. Electron J Biotechnol 10:124–140

    Google Scholar 

  • Villena GK, Moreno P, Correa MG (2001) Cellulase production by fungal biofilms on polyester cloth. Agro Food Industry Hi-Tech 12:32–35

    CAS  Google Scholar 

  • Walter S, Rohde M, Machner M, Schrempf H (1999) Electron microscopy studies of cell-wall-anchored cellulose (Avicel)-binding protein (AbpS) from Streptomyces reticuli. Appl Environ Microbiol 65:886–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZW (2007) Insights into mechanism of aerobic granulation in sequencing batch reactor. Ph.D. thesis. Nanyang Technology University, Singapore

  • Watanabe Y, Masuda S, Ishiguro M (1992) Simultaneous nitrification and denitrification in micro-aerobic biofilms. Water Sci Technol 26:511–522

    CAS  Google Scholar 

  • Webb OF, Davison BH, Scott TC, Scott CD (1995) Design and demonstration of an immobilized-cell fluidized-bed reactor for the efficient production of ethanol. Appl Biochem Biotechnol 51(52):559–568

    Google Scholar 

  • Weimer PJ, Koegel RG, Lorenz LF, Frihart CR, Kenealy WR (2005) Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum. Appl Microbiol Biotechnol 66:635–640

    CAS  PubMed  Google Scholar 

  • Wetzel RG (1991) Extracellular enzymatic interactions: storage, redistribution and interspecific communication. In: Chrorst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 6–28

    Google Scholar 

  • Wingender J, Jaeger KE, Flemming HC (1999) Interaction between extracellular polysaccharides and enzymes. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Heidelberg, pp 231–247

    Google Scholar 

  • Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. IWA, London

    Google Scholar 

  • You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zavilgelsky GB, Manukhov IV (2001) Quorum sensing, or how bacteria “talk” to each other. Mol Biol 35:224–232

    CAS  Google Scholar 

  • Zhang Z, MooYoung M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435

    CAS  PubMed  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    CAS  Google Scholar 

  • Zhang B, He PJ, Lu F, Shao LM, Wang P (2007) Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Res 41:4468–4478

    CAS  PubMed  Google Scholar 

  • Zhou B, Martin GJO, Pamment NB (2008) Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 100:627–633

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZW., Chen, S. Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83, 1–18 (2009). https://doi.org/10.1007/s00253-009-1940-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1940-9

Keywords

Navigation