Skip to main content
Log in

Mannanase Transfer into Hexane and Xylene by Liquid–Liquid Extraction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The formation of noncovalent complexes between glycosidase, endo-1,4-β-d-mannanase, and ionic surfactant di(2-ethylhexyl) sodium sulfosuccinate (AOT) was shown to promote protein transfer into organic solvents such as xylene and hexane. It was found that mannanase can be solubilized in hexane and in xylene with concentration at least 2.5 and 2.0 mg/ml, respectively. The catalytic activity of the enzyme in hexane spontaneously increases with the concentration of AOT and is about 10% of the activity in aqueous system. In xylene, a catalytic activity higher than that in bulk aqueous conditions was found for the samples containing 0.1–0.3 mg/ml of mannanase, while for the samples with a higher concentration of enzyme, the activity was hardly detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marques, S., Pala, H., Alves, L., Amaral-Collaco, M. T., Gama, F. M., & Girio, F. M. (2003). Characterisation and application of glycanases secreted by Aspergillus terreus CCMI 498 and Trichoderma viride CCMI 84 for enzymatic deinking of mixed office wastepaper. Journal of Biotechnology, 100, 209–219. doi:10.1016/S0168-1656(02)00247-X.

    Article  CAS  Google Scholar 

  2. Sachslehner, A., Foidl, G., Foidl, N., Gubitz, G., & Haltrich, D. (2000). Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. Journal of Biotechnology, 80, 127–134. doi:10.1016/S0168-1656(00)00253-4.

    Article  CAS  Google Scholar 

  3. Dhawan, S., & Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 27, 197–216. doi:10.1080/07388550701775919.

    Article  CAS  Google Scholar 

  4. Moreira, L. R., & Filho, E. X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79, 165–178. doi:10.1007/s00253-008-1423-4.

    Article  CAS  Google Scholar 

  5. Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C., & Combes, D. (2008). Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling, 24, 11–22. doi:10.1080/08927010701784912.

    Article  CAS  Google Scholar 

  6. Loiselle, M., & Anderson, K. W. (2003). The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling, 19, 77–85. doi:10.1080/0892701021000030142.

    Article  CAS  Google Scholar 

  7. Pettitt, M. E., Henry, S. L., Callow, M. E., Callow, J. A., & Clare, A. S. (2004). Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling, 20, 299–311. doi:10.1080/08927010400027068.

    Article  CAS  Google Scholar 

  8. Kristensen, J. B., Meyer, R. L., Laursen, B. S., Shipovskov, S., Besenbacher, F., & Poulsen, C. H. (2008). Antifouling enzymes and the biochemistry of marine settlement. Biotechnology Advances, 26, 471–481. doi:10.1016/j.biotechadv.2008.05.005.

    Article  CAS  Google Scholar 

  9. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50, 75–104. doi:10.1016/j.porgcoat.2003.06.001.

    Article  CAS  Google Scholar 

  10. Ballesteros, A., Bornscheuer, U., Capewell, A., Combes, D., Condoret, J. S., Koenig, K., et al. (1995). Enzymes in non-conventional phases. Biocatalysis and Biotransformation, 13, 1–42. doi:10.3109/10242429509040103.

    Article  CAS  Google Scholar 

  11. Sheldon, R.A. (2008). E factors, green chemistry and catalysis: an odyssey. Chemical Communications (Cambridge), 3352–3365. doi:10.1039/b803584a

  12. Madamwar, D., & Thakar, A. (2004). Entrapment of enzyme in water-restricted microenvironment for enzyme-mediated catalysis under microemulsion-based organogels. Applied Biochemistry and Biotechnology, 118, 361–369. doi:10.1385/ABAB:118:1-3:361.

    Article  CAS  Google Scholar 

  13. Martinek, K., Levashov, A. V., Khmelnitsky, Y. L., Klyachko, N. L., & Berezin, I. V. (1982). Colloidal solution of water in organic solvents: A microheterogeneous medium for enzymatic reactions. Science, 218, 889–891. doi:10.1126/science.6753152.

    Article  CAS  Google Scholar 

  14. Martinek, K., Levashov, A. V., Klyachko, N., Khmelnitski, Y. L., & Berezin, I. V. (1986). Micellar enzymology. European Journal of Biochemistry, 155, 453–468. doi:10.1111/j.1432-1033.1986.tb09512.x.

    Article  CAS  Google Scholar 

  15. Shipovskov, S., Ferapontova, E., Ruzgas, T., & Levashov, A. (2003). Stabilisation of tyrosinase by reversed micelles for bioelectrocatalysis in dry organic media. Biochimica et Biophysica Acta, 1620, 119–124.

    CAS  Google Scholar 

  16. Shipovskov, S., & Levashov, A. (2004). Entrapping of tyrosinase in a system of reverse micelles. Biocatalysis and Biotransformation, 22, 57–60. doi:10.1080/1024242310001634755.

    Article  CAS  Google Scholar 

  17. Tonova, K., & Lazarova, Z. (2008). Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnology Advances, 26, 516–532. doi:10.1016/j.biotechadv.2008.06.002.

    Article  CAS  Google Scholar 

  18. Paradkar, V. M., & Dordick, J. S. (1994). Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of aerosol OT in the absence of reversed micelles. Biotechnology and Bioengineering, 43, 529–540. doi:10.1002/bit.260430614.

    Article  CAS  Google Scholar 

  19. Paradkar, V. M., & Dordick, J. S. (1997). Aqueous-like activity of alpha-chymotrypsin dissolved in nearly anhydrous organic solvents. Journal of the American Chemical Society, 116, 5009–5010. doi:10.1021/ja00090a065.

    Article  Google Scholar 

  20. Shipovskov, S. (2008). Homogeneous esterification by lipase from B. cepacia in the fluorinated solvent. Biotechnology Progress, 24, 1262–1266. doi:10.1002/btpr.37.

    Article  CAS  Google Scholar 

  21. Akbar, U., Aschenbrenner, C. D., Harper, M. R., Johnson, H. R., Dordick, J. S., & Clark, D. S. (2007). Direct solubilization of enzyme aggregates with enhanced activity in nonaqueous media. Biotechnology and Bioengineering, 96, 1030–1039. doi:10.1002/bit.21291.

    Article  CAS  Google Scholar 

  22. Stålbrand, H., Siikaaho, M., Tenkanen, M., & Viikari, L. (1993). Purification and characterization of two beta-mannanases from Trichoderma reesei. Journal of Biotechnology, 29, 229–242. doi:10.1016/0168-1656(93)90055-R.

    Article  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  24. Ekwall, P., Mandell, L., & Fontell, K. (1970). Some observation on binary and ternary aerosol OT systems. Journal of Colloid and Interface Science, 33, 215–235. doi:10.1016/0021-9797(70)90024-X.

    Article  CAS  Google Scholar 

  25. Tamamushi, B., & Watanabe, N. (1980). The formation of molecular aggregation structures in ternary system: Aerosol OT/water/iso-octane. Colloid & Polymer Science, 258, 174–178. doi:10.1007/BF01498277.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Danish National Advanced Technology Foundation through the ProSURF platform (Protein-Based Functionalization of Surfaces). SS thanks Elin Ellebaek Petersen and Masoud Zargahi (Genencor, Danisco A/S) for support and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Shipovskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shipovskov, S., Kragh, K.M., Laursen, B.S. et al. Mannanase Transfer into Hexane and Xylene by Liquid–Liquid Extraction. Appl Biochem Biotechnol 160, 1124–1129 (2010). https://doi.org/10.1007/s12010-009-8661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8661-5

Keywords

Navigation