Skip to main content
Log in

Microwave Pretreatment of Substrates for Cellulase Production by Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The agricultural residues, wheat bran and rice hulls, were used as substrates for cellulase production with Trichoderma sp 3.2942 by solid-state fermentation. Microwave irradiation was employed to pretreat the substrates in order to increase the susceptibility. Although the highest cellulase yield was obtained by the substrates pretreated by 450 W microwave for 3 min, pretreatment time and microwave power had no significant effect on cellulase production. The initial reducing sugar content (RSC) of substrates was decreased by microwave irradiation, but more reducing sugars were produced in later fermentation. Alkali pretreatment combined with microwave pretreatment (APCMP) of rice hulls could significantly increase cellulase yields and reducing sugar. The maximum filter paper activity, carboximethylcellulase (CMC)ase, and RSC were increased by 35.2%, 21.4%, and 13%, respectively, compared with those of untreated rice hulls. The fermented residues could produce more cellulase and reducing sugars than fresh rice hulls after they were treated by APCMP. The increased accessibility of the substrates by microwave pretreatment was mainly achieved by rupture of the rigid structure of rice hulls. However, for alkali pretreatment and APCMP, delignification and removal of ash played very important roles for increasing the acceptability of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tengerdy, R. P., & Szakacs, G. (2003). Biochemical Engineering Journal, 13, 169–179. doi:10.1016/S1369-703X(02)00129-8.

    Article  CAS  Google Scholar 

  2. Balata, M. H., & Öz, B. C. (2008). Pror. Energy Combust. Sci., 34, 551–573. doi:10.1016/j.pecs.2007.11.001.

    Article  Google Scholar 

  3. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.

    Article  CAS  Google Scholar 

  4. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., et al. (2007). Biotechnology and Bioengineering, 97, 1028–1038. doi:10.1002/bit.21329.

    Article  CAS  Google Scholar 

  5. Cen, P. L., & Xia, L. M. (1999). Advances in Biochemical Engineering/Biotechnology, 65, 68–92.

    Google Scholar 

  6. Jecu, L. (2000). Industrial Crops and Products, 11, 1–5. doi:10.1016/S0926-6690(99)00022-9.

    Article  CAS  Google Scholar 

  7. Mekala, N. K., Singhania, R. R., Sukumaran, R. K., et al. (2008). Applied Biochemistry and Biotechnology, 151, 122–131. doi:10.1007/s12010-008-8156-9.

    Article  CAS  Google Scholar 

  8. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15, 583–620. doi:10.1016/S0734-9750(97)00006-2.

    Article  CAS  Google Scholar 

  9. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  10. Hendriks, A. T. W. M., & Zeema, G. (2008). Bioresource Technology, 100, 10–180. doi:10.1016/j.biortech.2008.05.027.

    Article  Google Scholar 

  11. Mosier, N., Wyman, C. E., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  12. Taherzadeh, M. J., & Karimi, K. (2008). International Journal of Molecular Sciences, 9, 1621–1651. doi:10.3390/ijms9091621.

    Article  CAS  Google Scholar 

  13. Yang, B., & Wyman, C. E. (2008). Biofuels Bioprod. Biorefin, 2, 26–40.

    Article  CAS  Google Scholar 

  14. Chahal, D. S. (1985). Applied and Environmental Microbiology, 49, 205–210.

    CAS  Google Scholar 

  15. Shin, C. S., Lee, J. P., Lee, J. S., & Park, S. C. (2000). Applied Biochemistry and Biotechnology, 84–86, 237–245. doi:10.1385/ABAB:84-86:1-9:237.

    Article  Google Scholar 

  16. Zheng, G. J., Zhou, Y. J., Zhang, J. A., Cheng, K. K., et al. (2007). Journal of Wood Chemistry and Technology, 27, 65–71. doi:10.1080/02773810701486675.

    Article  CAS  Google Scholar 

  17. Azuma, J. I., Tanaka, F., & Koshijima, T. (1984). Journal of Fermentation Technology, 62, 377–384.

    CAS  Google Scholar 

  18. Ooshima, H., Aso, K., & Harano, Y. (1984). Biotechnology Letters, 6, 289–294. doi:10.1007/BF00129056.

    Article  CAS  Google Scholar 

  19. Miura, M., Kaga, H., Sakurai, A., Kakuchi, T., & Takahashi, K. (2004). Journal of Analytical and Applied Pyrolysis, 71, 187–199. doi:10.1016/S0165-2370(03)00087-1.

    Article  CAS  Google Scholar 

  20. Kitchaiya, P., Intanakul, P., & Krairiksh, M. (2003). Journal of Wood Chemistry and Technology, 23, 217–225. doi:10.1081/WCT-120021926.

    Article  CAS  Google Scholar 

  21. Hu, Z., & Wen, Z. (2008). Biochemical Engineering Journal, 38, 369–378. doi:10.1016/j.bej.2007.08.001.

    Article  CAS  Google Scholar 

  22. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268. doi:10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  23. NREL.Standard Biomass Analytical Procedures-Laboratory Analytical Procedures (LAPs). Available from http://www.nrel.gov/biomass/analytical_procedures.html

  24. Chen, S. F., Zhao, L., & Liu, D. H. (2004). Food Ferment. Ind., 30, 8–12.

    Google Scholar 

  25. Mondal, K., Roy, I., & Munishwar, N. G. (2004). Biocatalysis and Biotransformation, 22, 9–16. doi:10.1080/10242420310001634971.

    Article  CAS  Google Scholar 

  26. Xiong, J., YE, J., Liang, W. Z., & Fan, P. M. (2000). J. South China Univ. Techonl., 28, 84–89.

    Google Scholar 

  27. Řezanka, T., & Sigler, K. (2008). Phytochemistry, 69, 585–606. doi:10.1016/j.phytochem.2007.09.018.

    Article  Google Scholar 

  28. Ma, H., Liu, W. W., Chen, X., Wu, Y. J., & Yu, Z. L. (2009). Bioresource Technology, 100, 1279–1284. doi:10.1016/j.biortech.2008.08.045.

    Article  CAS  Google Scholar 

  29. Zhao, X. B., Wang, L., & Liu, D. H. (2008). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 83, 950–956. doi:10.1002/jctb.1889.

    Article  CAS  Google Scholar 

  30. Pan, X. J., Gilkes, N., & Saddler, J. N. (2006). Holzforschung, 60, 398–401. doi:10.1515/HF.2006.062.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Basic Research Program of China (973 Program; No. 2004CB719700). The author also much appreciate Dr. Qiang Zhang in Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University for his help with SEM study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Zhou, Y., Zheng, G. et al. Microwave Pretreatment of Substrates for Cellulase Production by Solid-State Fermentation. Appl Biochem Biotechnol 160, 1557–1571 (2010). https://doi.org/10.1007/s12010-009-8640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8640-x

Keywords

Navigation