Skip to main content
Log in

Immobilization of β-Galactosidase onto Magnetic Beads

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A study of the cross-linking of β-galactosidase on magnetic beads is reported here. The magnetic beads were prepared from artemisia seed gum, chitosan, and magnetic fluid in the presence of a cross-linking regent (i.e., glutaraldehyde). The reactive aldehyde groups of the magnetic beads allowed the reaction of the amino groups of the enzymes. The animated magnetic beads were used for the covalent immobilization of β-galactosidase. The effect of various preparation conditions on the activity of the immobilized β-galactosidase, such as immobilizing time, amount of enzyme, and the concentration of glutaraldehyde, were investigated. The influence of pH and temperature on the activity and the stability of the enzyme, both free and immobilized, have been studied. And o-nitrophenyl-β-d-galactopyranoside (ONPG) was chosen as a substrate. The β-galactosidase immobilized on the magnetic beads resulted in an increase in enzyme stability. Optimum operational temperature for immobilized enzyme was 10 °C higher than that of free enzyme and was significantly broader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, S. G., Liu, B. L., & Li, S. L. (2005). Behaviors of enzyme immobilization onto functional microspheres. International Journal of Biological Macromolecules, 37(5), 263–267. doi:10.1016/j.ijbiomac.2005.12.007.

    Article  CAS  Google Scholar 

  2. Yagiz, F., Kazan, D., & Akin, A. N. (2007). Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chemical Engineering Journal, 134(1–3), 262–267. doi:10.1016/j.cej.2007.03.041.

    Article  CAS  Google Scholar 

  3. Li, S. J., Hu, J., & Liu, B. L. (2004). Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems, 77(1–3), 25–32. doi:10.1016/j.biosystems.2004.03.001.

    Article  CAS  Google Scholar 

  4. Lim, L. H., Macdonald, D. G., & Hill, G. A. (2003). Hydrolysis of starch particles using immobilized barley α-amylase. Biochemical Engineering Journal, 13(1), 53–62. doi:10.1016/S1369-703X(02)00101-8.

    Article  CAS  Google Scholar 

  5. Aksoy, S., Tumturk, H., & Hasirci, N. (1998). Stability of a-amylase immobilized on poly (methyl methacrylate–acrylic acid) beads. Journal of Biotechnology, 60(1–2), 37–46. doi:10.1016/S0168-1656(97)00179-X.

    Article  CAS  Google Scholar 

  6. Lei, H., Wang, W., Chen, L. L., Li, X. C., Yi, B., & Deng, L. (2004). The preparation and catalytically active characterization of papain immobilized on magnetic composite beads. Enzyme and Microbial Technology, 35(1), 15–21. doi:10.1016/j.enzmictec.2004.03.007.

    Article  CAS  Google Scholar 

  7. Alencar de Queiroz, A. A., Vitolo, M., De Oliveira, R. C., & Higa, O. Z. (1996). Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets. Radiation Physics and Chemistry, 47(6), 873–880. doi:10.1016/0969-806X(95)00181-V.

    Article  CAS  Google Scholar 

  8. Guo, Z., Bai, S., & Sun, Y. (2003). Preparation and characterization of immobilized lipase on magnetic hydrophobic beads. Enzyme and Microbial Technology, 32(7), 776–782.

    CAS  Google Scholar 

  9. Obon, J. M., Castellar, M. R., Iborra, J. L., & Manjon, A. (2000). β-Galactosidase immobilization for milk lactose hydrolysis: a simple experimental and modelling study of batch and continuous reactors. Biochemical Education, 28(3), 164–168. doi:10.1016/S0307-4412(99)00097-7.

    Article  CAS  Google Scholar 

  10. Quinn, Z. K., & Zhou, X. D. (2001). Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochemical Engineering Journal, 9(1), 33–40. doi:10.1016/S1369-703X(01)00118-8.

    Article  CAS  Google Scholar 

  11. Tanriseven, A., & Dogan, S. (2002). A novel method for the immobilization of β-galactosidase. Process Biochemistry, 38(1), 27–30. doi:10.1016/S0032-9592(02)00049-3.

    Article  CAS  Google Scholar 

  12. Zhang, J., Zhang, S. T., Wang, Y. P., & Zeng, J. Y. (2007). Composite magnetic microspheres: preparation and characterization. Journal of Magnetism and Magnetic Materials, 309(2), 197–201. doi:10.1016/j.jmmm.2006.06.035.

    Article  CAS  Google Scholar 

  13. Zhang, J., Zhang, S. T., Wu, G. P., Wang, W. Q., & Gao, S. F. (2007). An investigation of two kinds of magnetic chitosan composite microspheres. Journal of Bioactive and Compatible Polymers, 22(4), 429–441. doi:10.1177/0883911507079967.

    Article  CAS  Google Scholar 

  14. Giacomini, C., Villarino, A., Fraguas, L. F., & Viera, F. B. (1998). Immobilization of β-galactosidase from Kluyveromyces lactis on silica and agarose: comparison of different methods. Journal of Molecular Catalysis, B, Enzymatic, 4(5–6), 313–327. doi:10.1016/S1381-1177(98)00071-X.

    Article  CAS  Google Scholar 

  15. Hernaiz, M. J., & Crout, D. H. G. (2000). Immobilization/stabilization on Eepergit C of the β-galactosidase from B. circulans and an α-galactosidase from Aspergillus oryzae. Enzyme and Microbial Technology, 27(1–2), 26–32. doi:10.1016/S0141-0229(00)00150-2.

    Article  CAS  Google Scholar 

  16. Bayramoglu, G., Tunali, Y., & Arica, M. Y. (2007). Immobilization of β-galactosidase onto magnetic poly(GMA-MMA) beads for hydrolysis of lactose in bed reactor. Catalysis Communications, 8(7), 1094–1101. doi:10.1016/j.catcom.2006.10.029.

    Article  CAS  Google Scholar 

  17. Sanjay, G., & Sugunan, S. (2006). Enhanced pH and thermal stabilities of invertase immobilized on montmorillonite K-10. Food Chemistry, 94(4), 573–579. doi:10.1016/j.foodchem.2004.12.043.

    Article  CAS  Google Scholar 

  18. Xu, F. J., Cai, Q. J., Li, Y. L., et al. (2005). Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)–Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules, 6(2), 1012–1020. doi:10.1021/bm0493178.

    Article  CAS  Google Scholar 

  19. Dinnella, C., Monteleone, E., Farenga, M. F., et al. (2004). The use of enzymes for thermal process monitoring: modification of milk alkaline phosphatase heat resistance by means of an immobilization technique. Food Control, 15(6), 427–433. doi:10.1016/S0956-7135(03)00117-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Gao, S. & Gao, G. Immobilization of β-Galactosidase onto Magnetic Beads. Appl Biochem Biotechnol 160, 1386–1393 (2010). https://doi.org/10.1007/s12010-009-8600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8600-5

Keywords

Navigation