Skip to main content
Log in

Study on Mass Transfer of Isopropylbenzene and Oxygen in a Two-Phase Partitioning Bioreactor in the Presence of Silicone Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A two-phase partitioning bioreactor to treat gas effluents polluted by volatile organic compound has been developed. In this work, both the mass transfer of isopropylbenzene (IPB) and oxygen have been considered in relation to their influence on the hydrodynamics of the reactor and the type of silicone oils used as a second phase. The synergistic effect of silicone oil and stirrer speed on the global oxygen mass transfer coefficient (K L a) and gas holdup (up to 12%) have been investigated. The addition of 10% of low viscosity silicone oil (10 cSt) in the reactor does not significantly affect the oxygen transfer rate. The very high solubility of IPB in the silicone oil leads to an enhancement of driving force term, especially for high fraction of silicone oil. However, it does not seem useful to exceed a volume fraction of 10% since K L a IPB decreases sharply at higher proportions of silicone oil. K L a IPB and K L a O2 evolve in the same way with the proportion of silicone oil. These results confirm the potentialities of our bioreactor to improve both the oxygen and pollutant gas transfer in the field of the treatment of gaseous pollutants, even for highly concentrated effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Budavari, S., O’Neil, M. J., Smith, A., & Heckelman, P. E. (1996). The Merck index: An encyclopedia of chemicals, drugs and biological. Whitehouse Station, NJ: Merck.

    Google Scholar 

  2. EPA (1996). Priority Pollutants, Code of Federal Regulations. Title 40, Part 423, Appendix A, USA, Chapter 1.

  3. ASTDR (1997). Priority list of hazardous substances. Atlanta, USA: Agency of Toxic Substances and Disease Registry.

    Google Scholar 

  4. Van Groenestijn, J. W., & Kraakman, N. J. R. (2005). Chemical Engineering Journal, 113, 85–91. doi:10.1016/j.cej.2005.03.007.

    Article  Google Scholar 

  5. Davidson, C. T., & Daugulis, A. J. (2003). Applied Microbiology and Biotechnology, 62, 297–301. doi:10.1007/s00253-003-1298-3.

    Article  CAS  Google Scholar 

  6. Rene, E. R., Murthy, D. V. S., & Swaminathan, T. (2005). Process Biochemistry, 40, 2771–2779. doi:10.1016/j.procbio.2004.12.010.

    Article  CAS  Google Scholar 

  7. Budwill, K., & Coleman, R. N. (1997). Mededelingen—Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent, 62, 1521–1528.

    CAS  Google Scholar 

  8. Cesário, M. T., Beverloo, W. A., Tramper, J., & Beeftink, H. H. (1997). Enzyme and Microbial Technology, 21, 578–588. doi:10.1016/S0141-0229(97)00069-0.

    Article  Google Scholar 

  9. Daugulis, A. J. (2001). Trends in Biotechnology, 19, 457–460. doi:10.1016/S0167-7799(01)01789-9.

    Article  CAS  Google Scholar 

  10. Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. (2007). Biotechnology Advances, 25, 410–422. doi:10.1016/j.biotechadv.2007.03.005.

    Article  Google Scholar 

  11. Nielsen, D. R., Sask, K. N., McLellan, P. J., & Daugulis, A. J. (2006). Bioprocess and Biosystems Engineering, 29, 229–240. doi:10.1007/s00449-006-0071-2.

    Article  CAS  Google Scholar 

  12. Muñoz, R., Arriaga, S., Hernández, S., Guieysse, B., & Revah, S. (2006). Process Biochemistry, 41, 1614–1619. doi:10.1016/j.procbio.2006.03.007.

    Article  Google Scholar 

  13. Boudreau, N. G., & Daugulis, A. J. (2006). Biotechnology and Bioengineering, 94, 448–457. doi:10.1002/bit.20876.

    Article  CAS  Google Scholar 

  14. Aldric, J. M., Destain, J., & Thonart, P. (2005). Applied Biochemistry and Biotechnology, 121-124, 707–720. doi:10.1385/ABAB:122:1-3:0707.

    Article  Google Scholar 

  15. Daugulis, A. J., & Boudreau, N. G. (2003). Biotechnology Letters, 25, 1421–1424. doi:10.1023/A:1025099427538.

    Article  CAS  Google Scholar 

  16. García-Peña, E. I., Hernandez, S., Favela-Torres, E., Auria, R., & Revah, S. (2001). Biotechnology and Bioengineering, 76, 61–69. doi:10.1002/bit.1026.

    Article  Google Scholar 

  17. Jacobs, P., de Bo, I., Demeestere, K., Verstraete, W., & van Langenhove, H. (2004). Biotechnology and Bioengineering, 85, 68–77. doi:10.1002/bit.10839.

    Article  CAS  Google Scholar 

  18. Arriaga, S., & Revah, S. (2005). Biotechnology and Bioengineering, 90, 107–115. doi:10.1002/bit.20424.

    Article  CAS  Google Scholar 

  19. Djeribi, R., Dezenclos, T., Pauss, A., & Lebeault, J. M. (2005). Engineering in Life Sciences, 5, 450–457. doi:10.1002/elsc.200520092.

    Article  CAS  Google Scholar 

  20. Dumont, E., & Delmas, H. (2003). Chemical Engineering and Processing, 42, 419–438. doi:10.1016/S0255-2701(02)00067-3.

    Article  CAS  Google Scholar 

  21. Vrionis, H. A., Kropinsky, A. M., & Daugulis, A. J. (2002). Biotechnology and Bioengineering, 79, 587–594. doi:10.1002/bit.10313.

    Article  CAS  Google Scholar 

  22. MacMillan, J. D., & Wang, D. I. C. (1990). Annals of the New York Academy of Sciences, 589, 283–300. doi:10.1111/j.1749-6632.1990.tb24253.x.

    Article  Google Scholar 

  23. Mehta, V. D., & Sharma, M. M. (1971). Chemical Engineering Science, 26, 461–479. doi:10.1016/0009-2509(71)83019-1.

    Article  CAS  Google Scholar 

  24. Rols, J. L., Condoret, J. S., Fonade, C., & Goma, G. (1990). Biotechnology and Bioengineering, 35, 427–435. doi:10.1002/bit.260350410.

    Article  CAS  Google Scholar 

  25. Alliance of American Insurers (1987). Handbook of organic industrial solvents (6th ed.). Chicago: Alliance of American Insurers.

    Google Scholar 

  26. Nielsen, D. R., Daugulis, A. J., & McLellan, P. J. (2003). Biotechnology and Bioengineering, 83, 735–742. doi:10.1002/bit.10721.

    Article  CAS  Google Scholar 

  27. Dumont, E., Andrès, Y., & Le Cloirec, P. (2006). Biochemical Engineering Journal, 28, 245–252. doi:10.1016/j.bej.2006.05.003.

    Article  Google Scholar 

  28. Marcelis, C. L. M., van Leeuwen, M., Polderman, H. G., Janssen, A. J. H., & Lettinga, G. (2003). Biochemical Engineering Journal, 16, 253–264. doi:10.1016/S1369-703X(03)00041-X.

    Article  CAS  Google Scholar 

  29. Roustan, M. Techniques de l’ingénieur, traité de génie des procédés. Doc. J 3 803.

Download references

Acknowledgments

The authors wish to acknowledge Dow-Corning Society and Ir. Omar Moumou for their participation in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Aldric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldric, JM., Lecomte, JP. & Thonart, P. Study on Mass Transfer of Isopropylbenzene and Oxygen in a Two-Phase Partitioning Bioreactor in the Presence of Silicone Oil. Appl Biochem Biotechnol 153, 67–79 (2009). https://doi.org/10.1007/s12010-008-8480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8480-0

Keywords

Navigation