Skip to main content

Absorption of Hydrophobic Volatile Organic Compounds in Ionic Liquids and Their Biodegradation in Multiphase Systems

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Ionic Liquids

Abstract

The coupling of absorption in a gas-liquid contactor and biodegradation in a two-phase partitioning bioreactor (TPPB) has been shown to be a promising technology for the removal of hydrophobic volatile organic compounds. The choice of the organic phase is crucial, and consequently only two families of compounds comply with the requested criteria, silicone oils and ionic liquids. These latter solvents appear especially promising owing to their absorption capacity towards hydrophobic compounds and their low volatility, as well as the possibility of IL tailoring, allowing a fine-tuning of their physicochemical properties, leading to a wide range of products with various characteristics. Some results on common ionic liquids are highlighted in this chapter: biodegradation rates reported by some authors show that phenol biodegradation in the presence of ILs is up to 40 % higher than those obtained in other multiphase reactors; there is a strong affinity of toluene and DMDS for imidazolium salts, [C4Mim][PF6] or [C4Mim][NTf2]. Performance improvements may be expected from the tailoring of ionic liquid structure, especially towards toxicity reduction. Positive results recorded after cell acclimation to target compounds let expect an important gain from more complex acclimation strategies, including microbial acclimation to both ionic liquids and pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darracq G, Couvert A, Couriol C, Amrane A, Le Cloirec P. Removal of hydrophobic VOC in an integrated process coupling absorption and biodegradation – selection of an organic liquid phase. Water Air Soil Pollut. 2012;223:4969–97.

    Google Scholar 

  2. Quijano G, Couvert A, Amrane A. Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol. 2010;101:8923–30.

    Google Scholar 

  3. Baumann MD, Daugulis AJ, Jessop PG. Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol. 2005;67:131–7.

    Google Scholar 

  4. Quijano G, Couvert A, Amrane A, Darracq G, Couriol C, Le Cloirec P, Paquin L, Carrié D. Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci. 2011;66:2707–12.

    Google Scholar 

  5. Quijano G, Couvert A, Amrane A, Darracq G, Couriol C, Le Cloirec P, Paquin L, Carrié D. Toxicity and biodegradability of ionic liquids: new perspectives towards whole-cell biotechnological applications. Chem Eng J. 2011;174:27–32.

    Google Scholar 

  6. Bruce LJ, Daugulis AJ. Solvent selection strategies for extractive biocatalysis. Biotechnol Prog. 1991;61:116–24.

    Google Scholar 

  7. Déziel E, Commeau Y, Villemur R. Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation. 1999;10:219–33.

    Google Scholar 

  8. Rontani JF, Giusti G. Study of the biodegradation of poly-branched alkanes by a marine bacterial community. Mar Chem. 1986;20:197–205.

    Google Scholar 

  9. Quijano G, Hernandez M, Thalasso F, Muñoz R, Villaverde S. Two-phase partitioning bioreactor in environment biotechnology. Appl Microbiol Biotechnol. 2009;84:829–46.

    Google Scholar 

  10. Darracq G, Couvert A, Couriol C, Amrane A, Thomas D, Dumont E, Andres Y, Le Cloirec P. Silicone oil: an effective absorbent for hydrophobic volatile organic compounds (VOC) removal. J Chem Technol Biotechnol. 2010;85:309–13.

    Google Scholar 

  11. Muñoz R, Arriaga S, Hernandez S, Guieysse B, Revah S. Enhanced hexane biodegradation in a two phase partitioning bioreactor: overcoming pollutant transport limitations. Process Biochem. 2006;41:1614–19.

    Google Scholar 

  12. Aldric JM, Thonart P. Performance of a water/silicone oil two-phase partitioning bioreactor using Rhodococcus erythropolis T902.1 to remove volatile organic compounds from gaseous effluents. J Chem Technol Biotechnol. 2008;83:1401–8.

    Google Scholar 

  13. Mahanty B, Parkshirajan K, Dasu VV. Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresour Technol. 2008;99:2694–8.

    Google Scholar 

  14. Wilkes JS. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem. 2002;4(2):73–80.

    Google Scholar 

  15. Yau HM, Chan SJ, George SRD, Hook JM, Croft AK, Harper JB. Ionic liquids: just Molten salts after all? Molecules. 2009;14(7):2521–34.

    Google Scholar 

  16. Yang Z, Pan W. Ionic liquids: green solvents for non aqueous biocatalysis. Enzyme Microbial Technol. 2005;37:19–28.

    Google Scholar 

  17. Earle MJ, Seddon KR. Ionic liquids, green solvents for the future. Pure Appl Chem. 2000;72:1391–8.

    Google Scholar 

  18. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.

    Google Scholar 

  19. Earle MJ, Katdare SP, Seddon KR. Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Lett. 2004;6(5):707–10.

    Google Scholar 

  20. Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun L, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun. 2006;24:2554–6.

    Google Scholar 

  21. Earle MJ, Esperança JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. The distillation and volatility of ionic liquids. Nature. 2006;439(7078):831–4.

    Google Scholar 

  22. Liaw H-J, Huang S-K, Chen H-Y, Liu S-N. Reason for ionic liquids to be combustible. Procedia Eng. 2012;45:502–6.

    Google Scholar 

  23. Diallo A-O, Morgan AB, Len C, Marlair G. An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids. Energy Environ Sci. 2013;6(3):699–710.

    Google Scholar 

  24. Diallo AO, Len C, Morgan AB, Marlair G. Revisiting physico-chemical hazards of ionic liquids. Sep Purif Technol. 2012;97:228–34.

    Google Scholar 

  25. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–84.

    Google Scholar 

  26. Carda-Broch S, Berthod A, Armstrong DW. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem. 2003;375(2):191–9.

    Google Scholar 

  27. Morgan D, Ferguson L, Scovazzo P. Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Ind Eng Chem Res. 2005;44(13):4815–23.

    Google Scholar 

  28. Camper D, Becker C, Koval C, Noble R. Diffusion and solubility measurements in room temperature ionic liquids. Ind Eng Chem Res. 2005;45(1):445–50.

    Google Scholar 

  29. Ferguson L, Scovazzo P. Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res. 2007;46(4):1369–74.

    Google Scholar 

  30. Condemarin R, Scovazzo P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem Eng J. 2009;147(1):51–7.

    Google Scholar 

  31. Shiflett MB, Yokozeki A. Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AICHE J. 2006;52(3):1205–19.

    Google Scholar 

  32. Vuong MD, Couvert A, Couriol C, Amrane A, Le Cloirec P, Renner C. Determination of the Henry’s constant and the mass transfer velocity of VOCs in solvents. Chem Eng J. 2009;150:430.

    Google Scholar 

  33. Basmadjian D. Mass transfer and separation processes: principles and applications. New York: CRC Press; 2007.

    Google Scholar 

  34. Roustan M. Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. Paris: Lavoisier; 2003.

    Google Scholar 

  35. Danckwerts PV. Gas absorption with instantaneous reaction. Chem Eng Sci. 1968;23(9):1045–51.

    Google Scholar 

  36. Hou Y, Baltus R. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method. Ind Eng Chem Res. 2007;46(24):8166–75.

    Google Scholar 

  37. Shi W, Sorescu DC, Luebke DR, Keller MJ, Wickramanayake S. Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). J Phys Chem B. 2010;114(19):6531–41.

    Google Scholar 

  38. Shiflett MB, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]. Ind Eng Chem Res. 2005;44(12):4453–64.

    Google Scholar 

  39. Shiflett MB, Harmer MA, Junk CP, Yokozeki A. Solubility and diffusivity of difluoromethane in room-temperature ionic liquids. J Chem Eng Data. 2006;51(2):483–95.

    Google Scholar 

  40. Shiflett MB, Harmer MA, Junk CP, Yokozeki A. Solubility and diffusivity of 1,1,1,2-tetrafluoroethane in room-temperature ionic liquids. Fluid Phase Equilibr. 2006;242(2):220–32.

    Google Scholar 

  41. Skrzypczak A, Neta P. Diffusion-controlled electron-transfer reactions in ionic liquids. J Phys Chem A. 2003;107(39):7800–3.

    Google Scholar 

  42. Gong Y, Wang H, Chen Y, Hu X, Ibrahim A-R, Tanyi A-R, Hong Y, Su Y, Li J. A high-pressure quartz spring method for measuring solubility and diffusivity of CO2 in ionic liquids. Ind Eng Chem Res. 2013;52(10):3926–32.

    Google Scholar 

  43. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T. Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys. 2003;5(13):2790–4.

    Google Scholar 

  44. Jastorff B, Störmann R, Ranke J, Mölter K, Stock F, Oberheitmann B, Hoffmann W, Hoffmann J, Nüchter M, Ondruschka B. How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation. Green Chem. 2003;5(2):136–42.

    Google Scholar 

  45. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis Jr JH, Rogers RD. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterization, and extraction studies. Environ Sci Technol. 2002;36(11):2523–9.

    Google Scholar 

  46. Zhao H, Xia S, Ma P. Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol. 2005;80(10):1089–96.

    Google Scholar 

  47. Visser AE, Rogers RD. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J Solid State Chem. 2003;171(1):109–13.

    Google Scholar 

  48. Sun X, Ji Y, Hu F, He B, Chen J, Li D. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction. Talanta. 2010;81(4):1877–83.

    Google Scholar 

  49. Gaillard C, Mazan V, Georg S, Klimchuk O, Sypula M, Billard I, Schurhammer R, Wipff G. Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations. Phys Chem Chem Phys. 2012;14(15):5187–99.

    Google Scholar 

  50. Huddleston JG, Rogers RD. Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem Commun. 1998;16:1765–6.

    Google Scholar 

  51. Matsumoto M, Mochiduki K, Fukunishi K, Kondo K. Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol. 2004;40:97–101.

    Google Scholar 

  52. Matsumoto M, Mochiduki K, Kondo K. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J Biosci Bioeng. 2004;98:344–7.

    Google Scholar 

  53. Fan J, Fan Y, Pei Y, Wu K, Wang J, Fan M. Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Sep Purif Technol. 2008;61(3):324–31.

    Google Scholar 

  54. Koylecki T, Sawinski W, Sokoowski A, Ludwig W, Polowczyk I. Extraction of organic impurities using 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6]. Pol J Chem Technol. 2008;10(1):79–83.

    Google Scholar 

  55. Egorov VM, Smirnova SV, Pletnev IV. Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation. Sep Purif Technol. 2008;63(3):710–15.

    Google Scholar 

  56. Nakamura K-I, Kudo Y, Takeda Y, Katsuta S. Partition of substituted benzenes between hydrophobic ionic liquids and water: evaluation of interactions between substituents and ionic liquids. J Chem Eng Data. 2011;56(5):2160–7.

    Google Scholar 

  57. Katsuta S, Nakamura K, Kudo Y, Takeda Y. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems. J Phys Chem B. 2012;116(2):852–9.

    Google Scholar 

  58. Katsuta S, Nakamura K, Kudo Y, Takeda Y, Kato H. Partition behavior of chlorophenols and nitrophenols between hydrophobic ionic liquids and water. J Chem Eng Data. 2011;56(11):4083–9.

    Google Scholar 

  59. Rosatella AA, Branco LC, Afonso CAM. Studies on dissolution of carbohydrates in ionic liquids and extraction from aqueous phase. Green Chem. 2009;11(9):1406–13.

    Google Scholar 

  60. Tomé LIN, Catambas VR, Teles ARR, Freire MG, Marrucho IM, Coutinho JAP. Tryptophan extraction using hydrophobic ionic liquids. Sep Purif Technol. 2010;72:167–73.

    Google Scholar 

  61. Ha SH, Mai NL, Koo Y-M. Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction. Process Biochem. 2010;45(12):1899–903.

    Google Scholar 

  62. Hanke CG, Johansson A, Harper JB, Lynden-Bell RM. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chem Phys Lett. 2003;374(1):85–90.

    Google Scholar 

  63. Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR. Application of mutually immiscible ionic liquids to the separation of aromatic and aliphatic hydrocarbons by liquid extraction: a preliminary approach. Phys Chem Chem Phys. 2008;10(18):2538–42.

    Google Scholar 

  64. Calvar N, Dominguez I, Gomez E, Dominguez Ã. Separation of binary mixtures aromatic+ aliphatic using ionic liquids: influence of the structure of the ionic liquid, aromatic and aliphatic. Chem Eng J. 2011;175:213–21.

    Google Scholar 

  65. Dong K, Song Y, Liu X, Cheng W, Yao X, Zhang S. Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B. 2012;116(3):1007–17.

    Google Scholar 

  66. Dong K, Zhang S. Hydrogen bonds: a structural insight into ionic liquids. Chem-Eur J. 2012;18(10):2748–61.

    MathSciNet  Google Scholar 

  67. Housaindokht MR, Hosseini HE, Googheri MSS, Monhemi H, Najafabadi RI, Ashraf N, Gholizadeh M. Hydrogen bonding investigation in 1-ethyl-3-methylimidazolium based ionic liquids from density functional theory and atoms-in-molecules methods. J Mol Liq. 2013;177:94–101.

    Google Scholar 

  68. Gomes M, Lopes J, Padua A. Thermodynamics and micro heterogeneity of ionic liquids. Top Curr Chem. 2010;290:161–83.

    Google Scholar 

  69. Roland CM, Bair S, Casalini R. Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids. J Chem Phys. 2006;125(12):124508/124501–124508/124508.

    Google Scholar 

  70. Greaves TL, Drummond CJ. Ionic liquids as amphiphile self-assembly media. Chem Soc Rev. 2008;37(8):1709–26.

    Google Scholar 

  71. Kempter V, Kirchner B. The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids. J Mol Struct. 2010;972(1–3):22–34.

    Google Scholar 

  72. Pei YC, Wang JJ, Xuan XP, Fan J, Fan M. Factors affecting ionic liquids based removal of anionic dyes from water. Environ Sci Technol. 2007;41(14):5090–5.

    Google Scholar 

  73. Wang Y-X, Cao X-J. Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem. 2012;47(5):896–9.

    Google Scholar 

  74. Khodadoust AP, Chandrasekaran S, Dionysiou DD. Preliminary assessment of imidazolium-based room-temperature ionic liquids for extraction of organic contaminants from soils. Environ Sci Technol. 2006;40(7):2339–45.

    Google Scholar 

  75. Bonny S, Paquin L, Carrié D, Boustie J, Tomasi S. Ionic liquids based microwave-assisted extraction of lichen compounds with quantitative spectrophotodensitometry analysis. Anal Chim Acta. 2011;707(1):69–75.

    Google Scholar 

  76. Louros CLS, Claudio AFM, Neves CMSS, Freire MG, Marrucho IM, Pauly J, Coutinho JAP. Extraction of biomolecules using phosphonium-based ionic liquids+ K3PO4 aqueous biphasic systems. Int J Mol Sci. 2010;11(4):1777–91.

    Google Scholar 

  77. Tang B, Bi W, Tian M, Row KH. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J Chromatogr B. 2012;904:1–21.

    Google Scholar 

  78. Sashina ES, Novoselov NP, Kuz’mina OG, Troshenkova SV. Ionic liquids as new solvents of natural polymers. Fibre Chem. 2008;40(3):270–7.

    Google Scholar 

  79. Wang J, Pei Y, Zhao Y, Hu Z. Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chem. 2005;7(4):196–202.

    Google Scholar 

  80. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008;10(6):696–705.

    Google Scholar 

  81. Huaxi L, Zhuo L, Jingmei Y, Changping L, Yansheng C, Qingshan L, Xiuling Z. Liquid-liquid extraction process of amino acids by a new amide-based functionalized ionic liquid. Green Chem. 2012;14(6):1721–7.

    Google Scholar 

  82. Absalan G, Akhond M, Sheikhian L. Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids. Amino Acids. 2010;39(1):167–74.

    Google Scholar 

  83. Cai Y, Zhang Y, Peng Y, Lu F, Huang X, Song G. Carboxyl-functional ionic liquids as scavengers: case studies on benzyl chloride, amines, and methanesulfonyl chloride. J Comb Chem. 2006;8(5):636–8.

    Google Scholar 

  84. Anugwom I, Mäki-Arvela P, Salmi T, Mikkola J-P. Ionic liquid assisted extraction of nitrogen and sulphur-containing air pollutants from model oil and regeneration of the spent ionic liquid. J Environ Prot. 2011;2(6):796–802.

    Google Scholar 

  85. Ma J, Hong X. Application of ionic liquids in organic pollutants control. J Environ Manage. 2012;99:104–9.

    Google Scholar 

  86. Matsumoto M, Inomoto Y, Kondo K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J Membr Sci. 2005;246(1):77–81.

    Google Scholar 

  87. Blahut A, Dohnal V, Vrbka P. Interactions of volatile organic compounds with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J Chem Thermodyn. 2012;47:100–8.

    Google Scholar 

  88. Blahut A, Dohnal V. Interactions of volatile organic compounds with the ionic liquid 1-Butyl-1-methylpyrrolidinium dicyanamide. J Chem Eng Data. 2011;56(12):4909–18.

    Google Scholar 

  89. Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. J Phys Chem B. 2009;113(27):9304–10.

    Google Scholar 

  90. Milota M, Mosher P, Li K. VOC and HAP removal from dryer exhaust gas by absorption into ionic liquids. For Prod. 2007;57(5):73–7.

    Google Scholar 

  91. Milota M, Mosher P, Li K. RTIL absorption of organic emissions from press and dry exhaust. For Prod. 2008;58(4):97–101.

    Google Scholar 

  92. Chen C-C, Simoni LD, Brennecke JF, Stadtherr MA. Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model. Ind Eng Chem Res. 2008;47(18):7081–93.

    Google Scholar 

  93. Oliferenko AA, Oliferenko PV, Seddon KR, Torrecilla JS. Prediction of gas solubilities in ionic liquids. Phys Chem Chem Phys. 2011;13(38):17262–72.

    Google Scholar 

  94. Ramdin M, de Loos TW, Vlugt TJH. State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res. 2012;51(24):8149–77.

    Google Scholar 

  95. Jalili AH, Mehdizadeh A, Shokouhi M, Ahmadi AN, Hosseini-Jenab M, Fateminassab F. Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J Chem Thermodyn. 2010;42(10):1298–303.

    Google Scholar 

  96. Anthony JL, Maginn EJ, Brennecke JF. Solubilities and thermodynamic properties of gases in the ionic liquid 1-N-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B. 2002;106(29):7315–20.

    Google Scholar 

  97. Sharma A, Julcour C, Kelkar AA, Deshpande RM, Delmas H. Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor. Ind Eng Chem Res. 2009;48(8):4075–82.

    Google Scholar 

  98. Safamirzaei M, Modarress H. Application of neural network molecular modeling for correlating and predicting Henry’s law constants of gases in [bmim][PF6] at low pressures. Fluid Phase Equilibr. 2012;332:165–72.

    Google Scholar 

  99. Kolding H, Fehrmann R, Riisager A. CO2 capture technologies: current status and new directions using supported ionic liquid phase (SILP) absorbers. Sci China Chem. 2012;55(8):1648–56.

    Google Scholar 

  100. Gao T, Andino JM, Alvarez-Idaboy JR. Computational and experimental study of the interactions between ionic liquids and volatile organic compounds. Phys Chem Chem Phys. 2010;12(33):9830–8.

    Google Scholar 

  101. Nalli S, Cooper DG, Nicell JA. Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Sci Total Environ. 2006;366:286–94.

    Google Scholar 

  102. Liang DW, Zhang T, Fang HHP, He J. Phtalates biodegradation in the environment. Appl Microbiol Biotechnol. 2008;80:183–98.

    Google Scholar 

  103. Alexander M. Non-biodegradable and other recalcitrant molecules. Biotechnol Bioeng. 1973;15:611–47.

    Google Scholar 

  104. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids – advantages beyond green technology. Curr Opin Biotechnol. 2003;14:432–7.

    Google Scholar 

  105. Roosen C, Muller P, Greiner L. Ionic liquids in biotechnology: applications and perspectives for biotransformations. Appl Microbiol Biotechnol. 2008;81:607–14.

    Google Scholar 

  106. Pernak J, Sobaszkiewicz K, Mirska I. Anti-microbial activities of ionic liquids. Green Chem. 2003;5(1):52–6.

    Google Scholar 

  107. Romero A, Santos A, Tojo J, Rodriguez A. Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater. 2008;151(1):268–73.

    Google Scholar 

  108. Docherty KM, Kulpa Jr CF. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005;7(4):185–9.

    Google Scholar 

  109. Garcia MT, Gathergood N, Scammells PJ. Biodegradable ionic liquids. Part II. Effect of the anion and toxicology. Green Chem. 2005;7:9–14.

    Google Scholar 

  110. Pham TPT, Cho CW, Yun YS. Environmental fate and toxicity of ionic liquids: a review. Water Res. 2010;44:352–72.

    Google Scholar 

  111. Azimova MA, Morton SA, Frymier PD. Comparison of three bacterial toxicity assays for imidazolium-derived ionic liquids. J Environ Eng. 2009;135:1388–92.

    Google Scholar 

  112. Brautigam S, Dennewald D, Schurmann M, Lutje-Spelberg J, Pitner WR, Weuster-Botz D. Whole-cell biocatalysis: evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microbial Technol. 2009;45:316.

    Google Scholar 

  113. Pfruender H, Jones R, Weuster-Botz D. Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol. 2006;124:190.

    Google Scholar 

  114. Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng. 2000;69(2):227–33.

    Google Scholar 

  115. Ganske F, Bornscheuer UT. Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnol Lett. 2006;28(7):465–9.

    Google Scholar 

  116. Sendovski M, Nir N, Fishman A. Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem. 2010;58:2265.

    Google Scholar 

  117. Gathergood N, Garcia MT, Scammells PJ. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 2004;6(3):166–75.

    Google Scholar 

  118. Esquivel-Viveros A, Ponce-Vargas F, Esponda-Aguilar P, Prado-Barragan LA, Gutiierrez-Rojas M, Lye GJ, Huerta-Ochoa S. Biodegradacion de [bmim][PF6] utilizando Fusarium sp. Rev Mex Ing Quim. 2009;8(2):163–8.

    Google Scholar 

  119. Pham TPT, Cho C-W, Jeon C-O, Chung Y-J, Lee M-W, Yun Y-S. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol. 2009;43(2):516–21.

    Google Scholar 

  120. Jianping W, Yu C, Xiaoqiang J, Dongyan C. Simultaneous removal of ethyl acetate and ethanol in air streams using a gas–liquid–solid three-phase flow airlift loop bioreactor. Chem Eng J. 2005;106:175.

    Google Scholar 

  121. Muñoz R, Villaverde S, Guieysse B, Revah S. Two-phase partitioning bioreactor for treatment of volatile organic compounds. Biotechnol Adv. 2007;25:410–22.

    Google Scholar 

  122. Rehmann L, Prpich JP, Daugulis AJ. Remediation of PAH contaminated soils: application of a solid–liquid two-phase partitioning bioreactor. Chemosphere. 2008;73:804.

    Google Scholar 

  123. Rols JL, Condoret JS, Fonade C, Goma G. Mechanisms of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng. 1990;35:427–35.

    Google Scholar 

  124. Rehmann L, Daugulis AJ. Biodegradation of biphenyl in a solid-liquid two-phase partitioning bioreactor. Biochem Eng J. 2007;36:195–201.

    Google Scholar 

  125. Efroymson RA, Alexander M. Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol. 1991;57:1441–7.

    Google Scholar 

  126. Bouchez M, Blanchet D, Vandecasteele JP. An interfacial uptake mechanism for the degradation of pyrene by Rhodococcus strain. Microbiology. 1997;143:1087–93.

    Google Scholar 

  127. Guieysse B, Cirne MDDTG, Mattiasson B. Microbial degradation of phenanthrene and pyrene in a two-liquid-phase-partitioning bioreactor. Appl Microbiol Biotechnol. 2001;56:796–802.

    Google Scholar 

  128. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61:47–64.

    Google Scholar 

  129. Ascon-Cabrera MA, Lebeault JM. Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Environ Microbiol. 1993;59:1717–24.

    Google Scholar 

  130. Brennecke JF, Maginn EJ. Ionic liquids: innovative fluids for chemical processing. AICHE J. 2001;47(11):2384–9.

    Google Scholar 

  131. Freire MG, Neves CMSS, Marrucho IM, Lopes JNC, Rebelo LPN, Coutinho JAP. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem. 2010;12(10):1715–18.

    Google Scholar 

  132. Gubicza L, Belafi-Bako K, Feher E, Frater T. Waste-free process for continuous flow enzymatic esterification using a double pervaporation system. Green Chem. 2008;10(12):1284–7.

    Google Scholar 

  133. Oppermann S, Stein F, Kragl U. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis. Appl Microbiol Biotechnol. 2011;89(3):493–9.

    Google Scholar 

  134. Ge J, Zhou Y, Yang Y, Xue M. Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Ind Eng Chem Res. 2011;50(24):13686–92.

    Google Scholar 

  135. De Diego T, Manjon A, Lozano P, Vaultier M, Iborra JL. An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chem. 2011;13(2):444–51.

    Google Scholar 

  136. Gamstedt H, Hagfeldt A, Kloo L. Photoelectrochemical studies of ionic liquid-containing solar cells sensitized with different polypyridyl-ruthenium complexes. Polyhedron. 2009;28(4):757–62.

    Google Scholar 

  137. Ng YS, Jayakumar NS, Hashim MA. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: experimental study and optimization. Desalination. 2011;278(1):250–8.

    Google Scholar 

  138. Docherty KM, Dixon JK, Kulpar JCF. Biodegradation of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation. 2007;18:481–93.

    Google Scholar 

  139. Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt A-K, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thöming J. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem. 2008;10(2):214–24.

    Google Scholar 

  140. Zhao D, Liao Y, Zhang Z. Toxicity of ionic liquids. Clean Soil Air Water. 2007;35(1):42–8.

    Google Scholar 

  141. Coleman D, Gathergood N. Biodegradation studies of ionic liquids. Chem Soc Rev. 2010;39(2):600–37.

    Google Scholar 

  142. Frade RFM, Afonso CAM. Impact of ionic liquids in environment and humans: an overview. Hum Exp Toxicol. 2010;29(12):1038–54.

    Google Scholar 

  143. Zhang F, Ni Y, Sun Z, Zheng P, Lin W, Zhu P, Ju N. Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate catalyzed by Aureobasidium pullulans in an aqueous/ionic liquid biphase system. Chin J Catal. 2008;29(6):582.

    Google Scholar 

  144. Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell KA, Rogers RD. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem Commun. 2004;6:668–9.

    Google Scholar 

  145. Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem. 2006;8(3):238–40.

    Google Scholar 

  146. Papaiconomou N, Estager J, Traore Y, Bauduin P, Bas C, Legeai S, Viboud S, Draye M. Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J Chem Eng Data. 2010;55(5):1971–9.

    Google Scholar 

  147. Alvarez-Guerra M, Irabien A. Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach. Green Chem. 2011;13(6):1507–16.

    Google Scholar 

  148. Ventura SPM, Marques CS, Rosatella AA, Afonso CAM, Gonçalves F, Coutinho JAP. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf. 2012;76(2):162–8.

    Google Scholar 

  149. Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D. Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater. 2012;215–216:40–8.

    Google Scholar 

  150. Stolte S, Arning J, Bottin-Weber U, Müller A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J. Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem. 2007;9(7):760–7.

    Google Scholar 

  151. Ranke J, Müller K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf. 2004;58(3):396–404.

    Google Scholar 

  152. Kulacki KJ, Lamberti GA. Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 2008;10(1):104–10.

    Google Scholar 

  153. Costello DM, Brown LM, Lamberti GA. Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem. 2009;11(4):548–53.

    Google Scholar 

  154. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA. Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem. 2005;24(1):87–92.

    Google Scholar 

  155. Samori C, Sciutto G, Pezzolesi L, Galletti P, Guerrini F, Mazzeo R, Pistocchi R, Prati S, Tagliavini E. Effects of imidazolium ionic liquids on growth, photosynthetic efficiency, and cellular components of the diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem Res Toxicol. 2011;24(3):392–401.

    Google Scholar 

  156. Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H. New ionic liquids with tris (perfluoroalkyl) trifluorophosphate (FAP) anions. J Fluor Chem. 2005;126(8):1150–9.

    Google Scholar 

  157. Jacquemin J, Husson P, Padua AAH, Majer V. Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 2006;8(2):172–80.

    Google Scholar 

  158. Chiappe C, Pieraccini D. Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem. 2005;18(4):275–97.

    Google Scholar 

  159. Swatloski RP, Holbrey JD, Rogers RD. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003;5:361–3.

    Google Scholar 

  160. Zhou ZB, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl (alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem-Eur J. 2004;10(24):6581–91.

    Google Scholar 

  161. Steudte S, Stepnowski P, Cho C-W, Thöming J, Stolte S. (Eco) toxicity of fluoro-organic and cyano-based ionic liquid anions. Chem Commun. 2012;48(75):9382–4.

    Google Scholar 

  162. Ranke J, Müller A, Bottin-Weber U, Stock F, Stolte S, Arning J, Störmann R, Jastorff B. Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol Environ Saf. 2007;67(3):430–8.

    Google Scholar 

  163. Larson JH, Frost PC, Lamberti GA. Variable toxicity of ionic liquid-forming chemicals to Lemna minor and the influence of dissolved organic matter. Environ Toxicol Chem. 2008;27(3):676–81.

    Google Scholar 

  164. Hassoun EA, Abraham M, Kini V, Al-Ghafri M, Abushaban A. Cytotoxicity of the ionic liquids, 1-N-butyl-3-methylimidazolium chloride. Res Commun Pharm Toxicol. 2002;7(1&2):23–31.

    Google Scholar 

  165. Stepnowski P, Skladanowski AC, Ludwiczak A, Laczynska E. Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum Exp Toxicol. 2004;23(11):513–17.

    Google Scholar 

  166. Ranke DJ, Cox M, Müller A, Schmidt C, Beyersmann D. Sorption, cellular distribution, and cytotoxicity of imidazolium ionic liquids in mammalian cells-influence of lipophilicity. Toxicol Environ Chem. 2006;88(2):273–85.

    Google Scholar 

  167. Jeong S, Ha SH, Han S-H, Lim M-C, Kim SM, Kim Y-R, Koo Y-M, So J-S, Jeo T-J. Elucidation of molecular interactions between lipid membranes and ionic liquids using model cell membranes. Soft Matter. 2012;8(20):5501–6.

    Google Scholar 

  168. Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, Uerdingen M, Welz-Biermann U, Jastorff B, Ranke J. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006;8(7):621–9.

    Google Scholar 

  169. Salminen J, Papaiconomou N, Kumar RA, Lee J-M, Kerr J, Newman J, Prausnitz JM. Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibr. 2007;261(1):421–6.

    Google Scholar 

  170. Kumar RA, Papaiconomou N, Lee JM, Salminen J, Clark DS, Prausnitz JM. In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ Toxicol. 2009;24(4):388–95.

    Google Scholar 

  171. Arning J, Matzke M. Toxicity of ionic liquids towards mammalian cell lines. Curr Org Chem. 2011;15(12):1905–17.

    Google Scholar 

  172. Fatemi MH, Izadiyan P. Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere. 2011;84(5):553–63.

    Google Scholar 

  173. Dobler D, Schmidts T, Klingenhöfer I, Runkel F. Ionic liquids as ingredients in topical drug delivery systems. Int J Pharm. 2013;441:620–7.

    Google Scholar 

  174. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31(8):1429–36.

    Google Scholar 

  175. Boethling RS. Designing biodegradable chemicals. In: Designing safer chemicals, ACS symposium series, vol. 640. Washington, DC: American Chemical Society; 1996. p. 156–71.

    Google Scholar 

  176. Yu G, Zhao D, Wen L, Yang S, Chen X. Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis. AICHE J. 2012;58(9):2885–99.

    Google Scholar 

  177. Wells AS, Coombe VT. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev. 2006;10(4):794–8.

    Google Scholar 

  178. Harjani JR, Singer RD, Garcia MT, Scammells PJ. The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem. 2008;10(4):436–8.

    Google Scholar 

  179. Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ. Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem. 2010;12(5):851–8.

    Google Scholar 

  180. Ford L, Harjani JR, Atefi F, Garcia MT, Singer RD, Scammells PJ. Further studies on the biodegradation of ionic liquids. Green Chem. 2010;12(10):1783–9.

    Google Scholar 

  181. Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF. Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem. 2010;12(4):701–12.

    Google Scholar 

  182. Neumann J, Grundmann O, Thöming J, Schulte M, Stolte S. Anaerobic biodegradability of ionic liquid cations under denitrifying conditions. Green Chem. 2010;12(4):620–7.

    Google Scholar 

  183. Morrissey S, Pegot B, Coleman D, Garcia MT, Ferguson D, Quilty B, Gathergood N. Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: a step towards ‘greener’ ionic liquids. Green Chem. 2009;11(4):475–83.

    Google Scholar 

  184. Qi B, Moe WM, Kinney KA. Biodegradation of volatile organic compounds by five fungal species. Appl Microbiol Biotechnol. 2002;58:689.

    Google Scholar 

  185. Woertz JR, Kinney KA, McIntosh NDP, Szaniszlo PJ. Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Biotechnol Bioeng. 2001;75:558.

    Google Scholar 

  186. Daugulis AJ, Boudreau NG. Removal and destruction of high concentration of gaseous toluene in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans. Biotechnol Lett. 2003;25:1421–4.

    Google Scholar 

  187. Nielsen DR, Daugulis AJ, Mclellan PJ. Transient performance of a two-phase partitioning bioscrubber treating a benzene-contamination gas stream. Environ Sci Technol. 2005;39:8971–7.

    Google Scholar 

  188. Césario MT, Brandsma JB, Boon MA, Tramper J, Beeftink HH. Ethene removal from gas by recycling a water-immiscible solvent through a packed absorber and a bioreactor. J Biotechnol. 1998;62:105–18.

    Google Scholar 

  189. MacLeod CT, Daugulis AJ. Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem. 2005;40:1799–805.

    Google Scholar 

  190. Marcoux J, Déziel E, Villemur R, Lépine F, Bisaillon JG, Beaudet R. Optimization of high molecular weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol. 2000;88:655–62.

    Google Scholar 

  191. Tomei MC, Annesini RS, Daugulis AJ. Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modelling. Appl Microbiol Biotechnol. 2008;80:1105–12.

    Google Scholar 

  192. Darracq G, Couvert A, Couriol C, Amrane A, Le Cloirec P. Absorption and biodegradation of hydrophobic VOCs: determination of Henry’s constants and biodegradation levels. Water Sci Technol. 2009;59:1315–22.

    Google Scholar 

  193. Janikowski TB, Velicogna D, Punt M, Daugulis A. Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by Sphingomonas sp. J Appl Microbiol Biotechnol. 2002;59:368–76.

    Google Scholar 

  194. Aldric JM, Gillet S, Delvigne F, Blecker C, Lebeau F, Wathelet JP, Manigat G, Thonart P. Effect of surfactants and biomass on the gas/liquid mass transfer in an aqueous-silicone oil two-phase partitioning bioreactor using Rhodococcus erythropolis T902.1 to remove VOCs from gaseous effluents. J Chem Technol Biotechnol. 2009;84:1274–83.

    Google Scholar 

  195. Aldric JM, Lecomte JP, Thonat P. Study on mass transfer of isopropylbenzene and oxygen in a two-phase partitioning bioreactor in the presence of silicone oil. Appl Biochem Biotechnol. 2009;153:67–79.

    Google Scholar 

Download references

Acknowledgement

The authors want to thanks the French National Research Agency (ANR - Blank program) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeltif Amrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guihéneuf, S., Castillo, A.S.R., Paquin, L., Biard, PF., Couvert, A., Amrane, A. (2014). Absorption of Hydrophobic Volatile Organic Compounds in Ionic Liquids and Their Biodegradation in Multiphase Systems. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7711-8_12

Download citation

Publish with us

Policies and ethics