Skip to main content
Log in

The Methane Monooxygenase Intrinsic Activity of Kinds of Methanotrophs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methanotrophs have promising applications in the epoxidation of some alkenes and some chlorinated hydrocarbons and in the production of a biopolymer, poly-β-hydroxybutyrate (poly-3-hydroxybutyrate; PHB). In contrast with methane monooxygenase (MMO) activity and ability of PHB synthesis of four kinds of methanotrophic bacteria Methylosinus trichosporium OB3b, M. trichosporium IMV3011, Methylococcus capsulatus HD6T, Methylomonas sp. GYJ3, and the mixture of the four kinds of strains, M. trichosporium OB3b is the highest of the four in the activity of propene epoxidation (10.72 nmol/min mg dry weight of cell [dwc]), the activity of naphthalene oxidation (22.7 mmol/mg dwc), and ability in synthesis of PHB(11% PHB content in per gram dry weight of cell in 84 h). It could be feasible to improve the MMO activity by mixing four kinds of methanotrophs. The MMO activity dramatically decreased when the cellular PHB accumulated in the second stage. The reason for this may be the dilution of the MMO system in the cells with increasing PHB contents. It has been found that the PHB contents at the level of 1–5% are beneficial to the cells for maintenance of MMO epoxidation activity when enough PHB have been accumulated. Moreover, it was also found that high particulate methane monooxygenase activity may contribute to the synthesis of PHB in the cell, which could be used to improve the yield of PHB in methanotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Higgins, I. J., Best, D. J., Hammond, R. C., & Scott, D. (1981). Microbiological Reviews, 45, 556–590.

    CAS  Google Scholar 

  2. Xin, J.-Y., Cui, J.-R., Niu, J.-Z., Hua, S.-F., Xia, C.-G., Li, S.-B., & Zhu, L.-M. (2004a). Biocatalysis and Biotransformation, 22, 225–229. doi:10.1080/10242420412331283305.

    Article  CAS  Google Scholar 

  3. Xin, J.-Y., Cui, J.-R., Niu, J.-Z., Hua, S.-F., Xia, C.-G., Li, S.-B., & Zhu, L.-M. (2004b). Biotechnology, 3, 67–71.

    Article  Google Scholar 

  4. Shah, N. N., Hanna, M. L., & Taylor, R. T. (1996). Biotechnology and Bioengineering, 49, 161–171. doi:10.1002/(SICI)1097-0290(19960120)49:2<161::AID-BIT5>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  5. Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60, 439–471.

    CAS  Google Scholar 

  6. Park, S., Shah, N. N., Taylor, R. T., & Droege, M. W. (1992). Biotechnology and Bioengineering, 40, 151–157. doi:10.1002/bit.260400121.

    Article  CAS  Google Scholar 

  7. Cornish, A., MacDonald, J., Burrows, K. J., King, T. S., Scott, D., & Higgins, I. J. (1985). Biotechnology Letters, 7, 319–324. doi:10.1007/BF01030278.

    Article  CAS  Google Scholar 

  8. Davis, K., Cornish, A., & Higgins, I. J. (1987). Journal of General Microbiology, 133, 291–297.

    CAS  Google Scholar 

  9. Shah, N. N., Park, S., Taylor, R. T., & Droege, M. W. (1992). Biotechnology and Bioengineering, 40, 705–712. doi:10.1002/bit.260400609.

    Article  CAS  Google Scholar 

  10. Stanley, S. H., Prior, S. D., Leak, D. J., & Dalton, H. (1983). Biotechnology Letters, 5, 487–492. doi:10.1007/BF00132233.

    Article  CAS  Google Scholar 

  11. Shah, N. N., Hanna, M. L., Jackson, K. J., & Taylor, R. T. (1995). Biotechnology and Bioengineering, 45, 229–238. doi:10.1002/bit.260450307.

    Article  CAS  Google Scholar 

  12. Matsunaga, T., Matsunaga, N., & Nishimura, S. (1985). Biotechnology and Bioengineering, 27, 1277–1281. doi:10.1002/bit.260270902.

    Article  CAS  Google Scholar 

  13. Nakamura, N., Sulaswatty, A., Nishimura, S., & Matsunaga, T. (1992). Journal of Biotechnology, 26, 163–171. doi:10.1016/0168-1656(92)90004-S.

    Article  CAS  Google Scholar 

  14. Okura, I., Otsuka, K., Nakada, N., & Hasumi, F. (1990). Applied Biochemistry and Biotechnology, 24/25, 425–430. doi:10.1007/BF02920266.

    Article  Google Scholar 

  15. Wong, C.-H., Daniels, L., Orme-Johnson, W. H., & Whitesides, G. M. (1981). Journal of the American Chemical Society, 103, 6227–6228. doi:10.1021/ja00410a049.

    Article  CAS  Google Scholar 

  16. Stanley, S. H., & Dalton, H. (1992). Biocatalysis, 6, 163–175. doi:10.3109/10242429209014893.

    Article  CAS  Google Scholar 

  17. Asenjo, J. A., & Suk, J. S. (1986). Journal of Fermentation Technology, 64, 271–278. doi:10.1016/0385-6380(86)90118-4.

    Article  CAS  Google Scholar 

  18. Chang, H.-L., & Alvarez-Cohen, L. (1995). Biotechnology and Bioengineering, 45, 440–449. doi:10.1002/bit.260450509.

    Article  CAS  Google Scholar 

  19. Henry, S. M., & Grbic-Galic, D. (1991). Applied and Environmental Microbiology, 57, 236–244.

    CAS  Google Scholar 

  20. Henrysson, T., & McCarty, P. L. (1993). Applied and Environmental Microbiology, 59, 1602–1606.

    CAS  Google Scholar 

  21. Oldenhuis, R., Oedzes, J. Y., Waarde, J., & Janssen, D. B. (1991). Applied and Environmental Microbiology, 57, 7–14.

    CAS  Google Scholar 

  22. Shen, R.-N., Yuchi, L., Ma, Q.-Q., & Li, S.-B. (1997). Archives of Biochemistry and Biophysics, 345, 223–229. doi:10.1006/abbi.1997.0239.

    Article  CAS  Google Scholar 

  23. Park, S., Hanna, M. L., Taylor, R. T., & Droege, M. W. (1991). Biotechnology and Bioengineering, 38, 423–433. doi:10.1002/bit.260380412.

    Article  CAS  Google Scholar 

  24. Brusseau, G. A., Tsien, H. C., Hanson, R. S., & Wackett, L. P. (1990). Biodegradation, 1, 19–29. doi:10.1007/BF00117048.

    Article  CAS  Google Scholar 

  25. Chu, K. H., & Alvarez-Cohen, L. (1998). Applied and Environmental Microbiology, 64, 3451–3457.

    CAS  Google Scholar 

  26. Riis, V., & Mai, W. (1988). Journal of Chromatography, 445, 285–289. doi:10.1016/S0021-9673(01)84535-0.

    Article  CAS  Google Scholar 

  27. Korotkova, N., & Lidstrom, M. E. (2001). Journal of Bacteriology, 18, 1038–1046. doi:10.1128/JB.183.3.1038-1046.2001.

    Article  Google Scholar 

  28. Xin, J.-Y., Zhang, Y.-X., Zhang, S., Xia, C.-G., & Li, S.-B. (2007). Journal of Basic Microbiology, 47, 426–435. doi:10.1002/jobm.200710313.

    Article  CAS  Google Scholar 

  29. Chu, K. H., & Alvarez-Cohen, L. (1996). Water Environment Research, 68, 76–82. doi:10.2175/106143096X127235.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the work by the Program for New Century Excellent Talents in University (NCET-05-0358), the National Natural Science Foundation of China (20625308), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaying Xin or Chungu Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xin, J., Chen, L. et al. The Methane Monooxygenase Intrinsic Activity of Kinds of Methanotrophs. Appl Biochem Biotechnol 157, 431–441 (2009). https://doi.org/10.1007/s12010-008-8447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8447-1

Keywords

Navigation