Skip to main content
Log in

Statistical Optimization of Recycled-Paper Enzymatic Hydrolysis for Simultaneous Saccharification and Fermentation Via Central Composite Design

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 °C, 20 FPU g−1 substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l−1 was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Wyk, J. P. H., & Mohulatsi, M. (2003). Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresource Technology, 86, 21–23. doi:10.1016/S0960-8524(02)00130-X.

    Article  Google Scholar 

  2. Duff, S. J. B., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology, 55, 1–33. doi:10.1016/0960-8524(95)00122-0.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. (1999). Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226. doi:10.1146/annurev.energy.24.1.189.

    Article  Google Scholar 

  4. Pan, X. J., & Arato, C. (2005). Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90, 473–481. doi:10.1002/bit.20453.

    Article  CAS  Google Scholar 

  5. Chen, M., Zhao, J., & Xia, L. M. (2008). Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 71, 411–415. doi:10.1016/j.carbpol.2007.06.011.

    Article  CAS  Google Scholar 

  6. Wang, G., Mu, Y., & Yu, H. Q. (2005). Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochemical Engineering Journal, 23, 175–184. doi:10.1016/j.bej.2005.01.002.

    Article  CAS  Google Scholar 

  7. Lu, X. B., Zhang, Y. M., Yang, J., & Liang, Y. (2007). Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chemical Engineering & Technology, 30, 938–944. doi:10.1002/ceat.200700035.

    Article  CAS  Google Scholar 

  8. Khuri, A. I., & Cornell, J. A. (1987). Response surfaces: design and analysis. New York: Marcel Dekker.

    Google Scholar 

  9. Tang, X., He, G. Q., Chen, Q. H., Zhang, X. Y., & Ali, M. A. M. (2004). Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technology, 93, 175–181. doi:10.1016/j.biortech.2003.10.013.

    Article  CAS  Google Scholar 

  10. Shi, S. L. (2003). Analysis and detection of pulping and papermaking (1st ed.). Beijing: Chinese Light Industry Press.

    Google Scholar 

  11. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268. doi:10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  12. Kunamneni, A., & Singh, S. (2005). Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochemical Engineering Journal, 27, 179–190. doi:10.1016/j.bej.2005.08.027.

    Article  CAS  Google Scholar 

  13. Kaushik, R., Saran, S., Isar, J., & Saxena, R. K. (2006). Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. Journal of Molecular Catalysis. B, Enzymatic, 40, 121–126. doi:10.1016/j.molcatb.2006.02.019.

    Article  CAS  Google Scholar 

  14. Shieh, C. J., Liao, H. F., & Lee, C. C. (2003). Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technology, 88, 103–106. doi:10.1016/S0960-8524(02)00292-4.

    Article  CAS  Google Scholar 

  15. Cui, F. J., Li, Y., Xu, Z. H., Xu, H. Y., Sun, K., & Tao, W. Y. (2006). Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology, 97(10), 1209–1216. doi:10.1016/j.biortech.2005.05.005.

    Article  CAS  Google Scholar 

  16. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.

    Google Scholar 

  17. Zheng, Z. M., Hu, Q. L., Hao, J., Xu, F., Guo, N. N., Sun, Y., et al. (2008). Statistical optimization of culture conditions for 1, 3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresource Technology, 99(5), 1052–1056. doi:10.1016/j.biortech.2007.02.038.

    Article  CAS  Google Scholar 

  18. Varga, E., & Klinke, H. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88, 67–68. doi:10.1002/bit.20222.

    Article  Google Scholar 

  19. O’Dwyer, J. P., Zhu, L., & Granda, C. B. (2007). Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresource Technology, 98, 2969–2977. doi:10.1016/j.biortech.2006.10.014.

    Article  Google Scholar 

  20. Öhgren, K., & Bura, R. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42, 834–839. doi:10.1016/j.procbio.2007.02.003.

    Article  Google Scholar 

  21. Öhgren, K., & Rudolf, A. (2006). Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass and Bioenergy, 30, 863–869. doi:10.1016/j.biombioe.2006.02.002.

    Article  Google Scholar 

  22. Ballesteros, M., Oliva, J. M., Manzanares, P., Negro, M. J., & Ballesteros, I. (2002). Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World Journal of Microbiology & Biotechnology, 18, 559–561. doi:10.1023/A:1016378326762.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research of China (2004CB719703) and State 863 Program (2007AA100702-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-an Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Cheng, Kk., Zhang, Ja. et al. Statistical Optimization of Recycled-Paper Enzymatic Hydrolysis for Simultaneous Saccharification and Fermentation Via Central Composite Design. Appl Biochem Biotechnol 160, 604–612 (2010). https://doi.org/10.1007/s12010-008-8446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8446-2

Keywords

Navigation