Skip to main content

Advertisement

Log in

Accumulation of Exopolysaccharides in Liquid Suspension Culture of Nostoc flagelliforme Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The liquid suspension culture of dissociated Nostoc flagelliforme cells was investigated. It was found that the growth rate of N. flagelliforme cells and the accumulation of exopolysaccharides (EPS) increased prominently when NaNO3 and KH2PO4 were added in the liquid BG-11culture medium though phosphate had little effect on EPS yield for specific mass of cells. N. flagelliforme cells grew well at 25 °C and neutral pH, however, a lower or higher temperature and weak alkaline can promote EPS accumulation. With the increase of the light intensity, the growth rate of N. flagelliforme cells and the EPS accumulation increase accordingly. When N. flagelliforme cells was cultured in BG-11 medium added with 2.5 g L−1 of NaNO3 and 0.956 g L−1 of KH2PO4 at 25 °C with 60 μmol photon m−2 s−1 of light intensity, 1.05 g L−1 cell density and 89.9 mg L−1 EPS yield were achieved respectively. Adopting the optimal conditions established in flask culture, the liquid culture of N. flagelliforme cells in 20-L photobioreactor for 16 days was conducted and a maximum biomass of 1.32 g L−1 was achieved, which was about 17.6-fold of that in the initial inoculation. The yield of EPS was 228.56 mg L−1and about 2.23-fold of that in flask culture. Moreover, the polysaccharides’ material was released into the culture medium during cell growth. These released polysaccharides (RPSs), which can be easily recovered from the medium, are favorable for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sutherland, I. W. (1998). Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 1, 41–46. doi:10.1016/S0167-7799(97)01139-6.

    Article  Google Scholar 

  2. De Philippis, R., Sili, C., Paperi, R., & Vincenzini, M. (2001). Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. Journal of Applied Phycology, 13, 293–299. doi:10.1023/A:1017590425924.

    Article  Google Scholar 

  3. Hill, D. R., Keenan, T. W., Helm, R. F., Potts, M., Crowe, L. M., & Crowe, J. H. (1997). Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. Journal of Applied Phycology, 9, 237–248. doi:10.1023/A:1007965229567.

    Article  CAS  Google Scholar 

  4. Tamaru, Y., Takani, Y., Yoshida, T., & Sakamoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium nostoc commune. Applied and Environmental Microbiology, 11, 7327–7333. doi:10.1128/AEM.71.11.7327-7333.2005.

    Article  Google Scholar 

  5. Bender, J., & Phillips, P. (2004). Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource Technology, 94(3), 229–238. doi:10.1016/j.biortech.2003.12.016.

    Article  CAS  Google Scholar 

  6. Freire-Nordi, C. S., Vieira, A. A. H., & Nascimento, O. R. (2005). The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochemistry, 40(6), 2215–2224. doi:10.1016/j.procbio.2004.09.003.

    Article  CAS  Google Scholar 

  7. Liu, X. -J., & Chen, F. (2005). Potential uses of cyanobacterial polysaccharides in the food industry. In K. Shetty, G. Paliyath, A. L. Pometto, & R. E. Levin (Eds.), Food Biotechnology, 2nd Edn (pp. 473–490). Boca Raton: Marcel Dekker and CRC (Taylor and Francis Co).

    Google Scholar 

  8. Kanekiyo, K., Lee, J.-B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S., & Hayashi, T. (2005). Isolation of an antiviral polysaccharide nostoflan from a terrestrial cyanobacterium Nostoc flagelliforme. Journal of Natural Products, 68, 1037–1041. doi:10.1021/np050056c.

    Article  CAS  Google Scholar 

  9. Dai, Z. J. (1992). Review of Nostoc flagelliforme research. Journal of Ningxia University, 1, 71–77. Natural Science Edition.

    Google Scholar 

  10. Su, J. Y., Jia, S. R., Chen, X. F., & Yu, H. F. (2008). Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. Journal of Applied Phycology, 20, 213–217. doi:10.1007/s10811-007-9221-4.

    Article  CAS  Google Scholar 

  11. Gao, K. S., & Ye, C. P. (2003). Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae), under aquatic conditions. Journal of Phycology, 39, 617–623. doi:10.1046/j.1529-8817.2003.02013.x.

    Article  Google Scholar 

  12. Gao, K. S., & Yu, A. J. (2000). Influence of CO2, light and watering on growth of Nostoc flagelliforme mats. Journal of Applied Phycology, 12, 185–189. doi:10.1023/A:1008123203409.

    Article  Google Scholar 

  13. Su, J. Y., Jia, S. R., & Qiao, C. S. (2005). Culture of Nostoc flagelliforme on solid medium. Korean Journal of Environmental Boilogy, 23, 135–140.

    Google Scholar 

  14. Zhong, J. J., Seki, T., Kinoshita, S., & Yoshida, T. (1991). Effect of light irradiation on anthocyanin production by suspended culture of Perilla frutescens. Biotechnology and Bioengineering, 38, 653–658. doi:10.1002/bit.260380610.

    Article  CAS  Google Scholar 

  15. Hellwig, S., Drossard, J., Twyman, R. M., & Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. Nature Biotechnology, 22, 1415–1422. doi:10.1038/nbt1027.

    Article  CAS  Google Scholar 

  16. Zhong, J. J., Yoshida, M., Fujiyama, K., Seki, T., & Yoshida, T. (1993). Enhancement of anthocyanin production by Perilla frutescens cells in a stirred bioreactor with internal light irradiation. Journal of Fermentation and Bioengineering, 75, 299–303.

    Article  CAS  Google Scholar 

  17. Otero, A., & Vincenzini, M. (2003). Extracellular polysaccharide synthesis by Nostoc strains affected by N source and light intensity [J]. Journal of Biotechnology, 102, 143–152.

    Article  CAS  Google Scholar 

  18. Hu, H. H., & Gao, K. S. (2006). Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters, 28, 987–992.

    Article  CAS  Google Scholar 

  19. Harrison, P. J., Thompson, P. A., & Calderwood, G. S. (1990). Effects of nutrient and light limitation on the biochemical composition of phytoplankton. Journal of Applied Phycology, 2, 45–56.

    Article  Google Scholar 

  20. Fang, Q. H., & Zhong, J. J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37, 769–774.

    Article  CAS  Google Scholar 

  21. Zhao, D. X., Li, M. Y., Xing, J. M., & Tong, Z. (1999). Effects of light on cell growth and flavonoids biosynthesis in callus cultures of Saussurea medusa Maxim. Acta Phytophysiol Sinica, 25, 127–132. (in Chinese with English abstract).

    CAS  Google Scholar 

  22. Xu, N., Zhang, X., Fan, X., Han, L., & Zeng, C. (2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). Journal of Applied Phycology, 13, 463–469.

    Article  CAS  Google Scholar 

  23. Su, J. Y., He, Q., & Jia, S. R. (2006). Photosynthetic and respiratory rates in liquid suspension culture cells of Nostoc flagelliforme born.et flah. Plant Physiology Communications, 42, 417–421. (in Chinese with English abstract).

    Google Scholar 

  24. Li, Y. G., & Hu, Z. Y. (2003). Studies on the cultivation of Nostoc flagelliforme. J. Wuh. Botani. Res., 21, 411–414. (in Chinese with English abstract).

    Google Scholar 

  25. Bi, Y. H., & Hu, Z. Y. (2004). Influence of temperature, nutrients and light intensity on the growth of Nostoc flagelliforme. Chinese Journal of Process Engineering, 4, 245–249. (in Chinese with English abstract).

    CAS  Google Scholar 

  26. Jia, S. R., Su J.Y and Qiao C.S. (2005). Nostoc flagelliforme Cells cultivation and its products. Chinese patent ZL 03119101

  27. Bai, X. J., Su, J. Y., Zhao, S. X., & Jia, S. R. (2004). Study on the determination methods of extracellular polysaccharide in culture medium of Nostoc Flagelliforme cells. Science and Technology Food Industry, 25, 146–148. (in Chinese with English abstract).

    Google Scholar 

  28. Lama, L., Nicolaus, B., Calandrelli, V., Manca, M. C., Romano, I., & Gambacorta, A. (1996). Effect of growth conditionson endo- and exopolymer biosynthesis in Anabaena cylindrica 10C. Phytochemistry, 42, 655–659.

    Article  CAS  Google Scholar 

  29. Zhong, J. J., & Yoshida, T. (1993). Effects of temperature on cell growth and anthocyanin production by suspension cultures of Perilla frutescens cells. Journal of Fermentation and Bioengineering, 76, 530–531.

    Article  CAS  Google Scholar 

  30. Yu, H. F. (2007). Study on the High Cell Density Culture of Nostoc flagelliforme cells. Dissertation. Tianjin,China: Tianjin University of Science and Technology.

    Google Scholar 

  31. Vonshak, A., Cheung, S. M., & Chen, F. (2000). Mixotrophic growth modifies the response of Sprulina(Arthrospira)platensis (cyanobacteria) cells to light. Journal of Phycology, 36, 675–679.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China No. 20376061 and No. 20776112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiru Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Jia, S. & Dai, Y. Accumulation of Exopolysaccharides in Liquid Suspension Culture of Nostoc flagelliforme Cells. Appl Biochem Biotechnol 160, 552–560 (2010). https://doi.org/10.1007/s12010-008-8428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8428-4

Keywords

Navigation